YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Covariance of Optimal Parameters of an Arctic Sea Ice–Ocean Model

    Source: Monthly Weather Review:;2019:;volume 147:;issue 007::page 2579
    Author:
    Sumata, Hiroshi
    ,
    Kauker, Frank
    ,
    Karcher, Michael
    ,
    Gerdes, Rüdiger
    DOI: 10.1175/MWR-D-18-0375.1
    Publisher: American Meteorological Society
    Abstract: AbstractThe uniqueness of optimal parameter sets of an Arctic sea ice simulation is investigated. A set of parameter optimization experiments is performed using an automatic parameter optimization system, which simultaneously optimizes 15 dynamic and thermodynamic process parameters. The system employs a stochastic approach (genetic algorithm) to find the global minimum of a cost function. The cost function is defined by the model?observation misfit and observational uncertainties of three sea ice properties (concentration, thickness, drift) covering the entire Arctic Ocean over more than two decades. A total of 11 independent optimizations are carried out to examine the uniqueness of the minimum of the cost function and the associated optimal parameter sets. All 11 optimizations asymptotically reduce the value of the cost functions toward an apparent global minimum and provide strikingly similar sea ice fields. The corresponding optimal parameters, however, exhibit a large spread, showing the existence of multiple optimal solutions. The result shows that the utilized sea ice observations, even though covering more than two decades, cannot constrain the process parameters toward a unique solution. A correlation analysis shows that the optimal parameters are interrelated and covariant. A principal component analysis reveals that the first three (six) principal components explain 70% (90%) of the total variance of the optimal parameter sets, indicating a contraction of the parameter space. Analysis of the associated ocean fields exhibits a large spread of these fields over the 11 optimized parameter sets, suggesting an importance of ocean properties to achieve a dynamically consistent view of the coupled sea ice?ocean system.
    • Download: (5.658Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Covariance of Optimal Parameters of an Arctic Sea Ice–Ocean Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4263852
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorSumata, Hiroshi
    contributor authorKauker, Frank
    contributor authorKarcher, Michael
    contributor authorGerdes, Rüdiger
    date accessioned2019-10-05T06:55:32Z
    date available2019-10-05T06:55:32Z
    date copyright5/13/2019 12:00:00 AM
    date issued2019
    identifier otherMWR-D-18-0375.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4263852
    description abstractAbstractThe uniqueness of optimal parameter sets of an Arctic sea ice simulation is investigated. A set of parameter optimization experiments is performed using an automatic parameter optimization system, which simultaneously optimizes 15 dynamic and thermodynamic process parameters. The system employs a stochastic approach (genetic algorithm) to find the global minimum of a cost function. The cost function is defined by the model?observation misfit and observational uncertainties of three sea ice properties (concentration, thickness, drift) covering the entire Arctic Ocean over more than two decades. A total of 11 independent optimizations are carried out to examine the uniqueness of the minimum of the cost function and the associated optimal parameter sets. All 11 optimizations asymptotically reduce the value of the cost functions toward an apparent global minimum and provide strikingly similar sea ice fields. The corresponding optimal parameters, however, exhibit a large spread, showing the existence of multiple optimal solutions. The result shows that the utilized sea ice observations, even though covering more than two decades, cannot constrain the process parameters toward a unique solution. A correlation analysis shows that the optimal parameters are interrelated and covariant. A principal component analysis reveals that the first three (six) principal components explain 70% (90%) of the total variance of the optimal parameter sets, indicating a contraction of the parameter space. Analysis of the associated ocean fields exhibits a large spread of these fields over the 11 optimized parameter sets, suggesting an importance of ocean properties to achieve a dynamically consistent view of the coupled sea ice?ocean system.
    publisherAmerican Meteorological Society
    titleCovariance of Optimal Parameters of an Arctic Sea Ice–Ocean Model
    typeJournal Paper
    journal volume147
    journal issue7
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-18-0375.1
    journal fristpage2579
    journal lastpage2602
    treeMonthly Weather Review:;2019:;volume 147:;issue 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian