YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Parameter Optimization for Real-World ENSO Forecast in an Intermediate Coupled Model

    Source: Monthly Weather Review:;2019:;volume 147:;issue 005::page 1429
    Author:
    Zhao, Yuchu
    ,
    Liu, Zhengyu
    ,
    Zheng, Fei
    ,
    Jin, Yishuai
    DOI: 10.1175/MWR-D-18-0199.1
    Publisher: American Meteorological Society
    Abstract: AbstractWe performed parameter estimation in the Zebiak?Cane model for the real-world scenario using the approach of ensemble Kalman filter (EnKF) data assimilation and the observational data of sea surface temperature and wind stress analyses. With real-world data assimilation in the coupled model, our study shows that model parameters converge toward stable values. Furthermore, the new parameters improve the real-world ENSO prediction skill, with the skill improved most by the parameter of the highest climate sensitivity (gam2), which controls the strength of anomalous upwelling advection term in the SST equation. The improved prediction skill is found to be contributed mainly by the improvement in the model dynamics, and second by the improvement in the initial field. Finally, geographic-dependent parameter optimization further improves the prediction skill across all the regions. Our study suggests that parameter optimization using ensemble data assimilation may provide an effective strategy to improve climate models and their real-world climate predictions in the future.
    • Download: (2.630Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Parameter Optimization for Real-World ENSO Forecast in an Intermediate Coupled Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4263789
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorZhao, Yuchu
    contributor authorLiu, Zhengyu
    contributor authorZheng, Fei
    contributor authorJin, Yishuai
    date accessioned2019-10-05T06:54:14Z
    date available2019-10-05T06:54:14Z
    date copyright2/18/2019 12:00:00 AM
    date issued2019
    identifier otherMWR-D-18-0199.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4263789
    description abstractAbstractWe performed parameter estimation in the Zebiak?Cane model for the real-world scenario using the approach of ensemble Kalman filter (EnKF) data assimilation and the observational data of sea surface temperature and wind stress analyses. With real-world data assimilation in the coupled model, our study shows that model parameters converge toward stable values. Furthermore, the new parameters improve the real-world ENSO prediction skill, with the skill improved most by the parameter of the highest climate sensitivity (gam2), which controls the strength of anomalous upwelling advection term in the SST equation. The improved prediction skill is found to be contributed mainly by the improvement in the model dynamics, and second by the improvement in the initial field. Finally, geographic-dependent parameter optimization further improves the prediction skill across all the regions. Our study suggests that parameter optimization using ensemble data assimilation may provide an effective strategy to improve climate models and their real-world climate predictions in the future.
    publisherAmerican Meteorological Society
    titleParameter Optimization for Real-World ENSO Forecast in an Intermediate Coupled Model
    typeJournal Paper
    journal volume147
    journal issue5
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-18-0199.1
    journal fristpage1429
    journal lastpage1445
    treeMonthly Weather Review:;2019:;volume 147:;issue 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian