On the Realism of the Rain Microphysics Representation of a Squall Line in the WRF Model. Part II: Sensitivity Studies on the Rain Drop Size DistributionsSource: Monthly Weather Review:;2019:;volume 147:;issue 008::page 2811Author:Planche, Céline
,
Tridon, Frédéric
,
Banson, Sandra
,
Thompson, Gregory
,
Monier, Marie
,
Battaglia, Alessandro
,
Wobrock, Wolfram
DOI: 10.1175/MWR-D-18-0019.1Publisher: American Meteorological Society
Abstract: AbstractA comparison between retrieved properties of the rain drop size distributions (DSDs) from multifrequency cloud radar observations and WRF Model results using either the Morrison or the Thompson bulk microphysics scheme is performed in order to evaluate the model?s ability to predict the rain microphysics. This comparison reveals discrepancies in the vertical profile of the rain DSDs for the stratiform region of the squall-line system observed on 12 June 2011 over Oklahoma. Based on numerical sensitivity analyses, this study addresses the bias at the top of the rain layer and the vertical evolution of the DSD properties (i.e., of Dm and N0*). In this way, the Thompson scheme is used to explore the sensitivity to the melting process. Moreover, using the Thompson and Morrison schemes, the sensitivity of the DSD vertical evolution to different breakup and self-collection parameterizations is studied. Results show that the DSDs are strongly dependent on the representation of the melting process in the Thompson scheme. In the Morrison scheme, the simulations with more efficient breakup reproduce the DSD properties with better fidelity. This study highlights how the inaccuracies in simulated Dm and N0* for both microphysics schemes can impact the evaporation rate, which is systematically underestimated in the model.
|
Collections
Show full item record
contributor author | Planche, Céline | |
contributor author | Tridon, Frédéric | |
contributor author | Banson, Sandra | |
contributor author | Thompson, Gregory | |
contributor author | Monier, Marie | |
contributor author | Battaglia, Alessandro | |
contributor author | Wobrock, Wolfram | |
date accessioned | 2019-10-05T06:53:53Z | |
date available | 2019-10-05T06:53:53Z | |
date copyright | 5/16/2019 12:00:00 AM | |
date issued | 2019 | |
identifier other | MWR-D-18-0019.1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4263770 | |
description abstract | AbstractA comparison between retrieved properties of the rain drop size distributions (DSDs) from multifrequency cloud radar observations and WRF Model results using either the Morrison or the Thompson bulk microphysics scheme is performed in order to evaluate the model?s ability to predict the rain microphysics. This comparison reveals discrepancies in the vertical profile of the rain DSDs for the stratiform region of the squall-line system observed on 12 June 2011 over Oklahoma. Based on numerical sensitivity analyses, this study addresses the bias at the top of the rain layer and the vertical evolution of the DSD properties (i.e., of Dm and N0*). In this way, the Thompson scheme is used to explore the sensitivity to the melting process. Moreover, using the Thompson and Morrison schemes, the sensitivity of the DSD vertical evolution to different breakup and self-collection parameterizations is studied. Results show that the DSDs are strongly dependent on the representation of the melting process in the Thompson scheme. In the Morrison scheme, the simulations with more efficient breakup reproduce the DSD properties with better fidelity. This study highlights how the inaccuracies in simulated Dm and N0* for both microphysics schemes can impact the evaporation rate, which is systematically underestimated in the model. | |
publisher | American Meteorological Society | |
title | On the Realism of the Rain Microphysics Representation of a Squall Line in the WRF Model. Part II: Sensitivity Studies on the Rain Drop Size Distributions | |
type | Journal Paper | |
journal volume | 147 | |
journal issue | 8 | |
journal title | Monthly Weather Review | |
identifier doi | 10.1175/MWR-D-18-0019.1 | |
journal fristpage | 2811 | |
journal lastpage | 2825 | |
tree | Monthly Weather Review:;2019:;volume 147:;issue 008 | |
contenttype | Fulltext |