YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Observed Inverse Relationship between Rainfall Amount and Dissolved Mineral Content

    Source: Journal of Hydrometeorology:;2019:;volume 020:;issue 006::page 1235
    Author:
    Stout, John E.
    DOI: 10.1175/JHM-D-18-0204.1
    Publisher: American Meteorological Society
    Abstract: AbstractRainfall samples collected on the high plains of West Texas exhibit a high degree of variability with respect to the concentration of dissolved solids. That such variations should occur is to be expected, but there remains some uncertainty regarding factors that influence the ionic composition of individual samples. Measurements often show a distinct decrease in concentration with increasing precipitation amount. The reason for this inverse relationship is not intuitively obvious; however, it can be explained from a theoretical perspective. A theory was proposed that describes the concentration of dissolved solids in a collected rainfall sample. The theoretical basis of the derived equation rests upon fundamental principles of conservation of fluid volume and conservation of mass. This equation, which provides valuable insight into the process, suggests that if the rain sampling tube is absolutely clean at the start of a rain event, then the rainfall sample will not be altered by its collection and, therefore, will provide a true measure of rainfall chemistry. However, if windblown dust or other impurities are allowed to deposit in the rain gauge prior to or during the early stages of a rain event, then the concentration of dissolved solids can be very large for small sample volumes and not at all representative of the true concentration within the rain cloud. Results suggest that impurities in the rain sample can be appreciably diluted by the addition of relatively pure rainwater such that the concentration will asymptotically approach the true concentration as the rainfall sample volume increases.
    • Download: (1.061Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Observed Inverse Relationship between Rainfall Amount and Dissolved Mineral Content

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4263740
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorStout, John E.
    date accessioned2019-10-05T06:53:18Z
    date available2019-10-05T06:53:18Z
    date copyright4/17/2019 12:00:00 AM
    date issued2019
    identifier otherJHM-D-18-0204.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4263740
    description abstractAbstractRainfall samples collected on the high plains of West Texas exhibit a high degree of variability with respect to the concentration of dissolved solids. That such variations should occur is to be expected, but there remains some uncertainty regarding factors that influence the ionic composition of individual samples. Measurements often show a distinct decrease in concentration with increasing precipitation amount. The reason for this inverse relationship is not intuitively obvious; however, it can be explained from a theoretical perspective. A theory was proposed that describes the concentration of dissolved solids in a collected rainfall sample. The theoretical basis of the derived equation rests upon fundamental principles of conservation of fluid volume and conservation of mass. This equation, which provides valuable insight into the process, suggests that if the rain sampling tube is absolutely clean at the start of a rain event, then the rainfall sample will not be altered by its collection and, therefore, will provide a true measure of rainfall chemistry. However, if windblown dust or other impurities are allowed to deposit in the rain gauge prior to or during the early stages of a rain event, then the concentration of dissolved solids can be very large for small sample volumes and not at all representative of the true concentration within the rain cloud. Results suggest that impurities in the rain sample can be appreciably diluted by the addition of relatively pure rainwater such that the concentration will asymptotically approach the true concentration as the rainfall sample volume increases.
    publisherAmerican Meteorological Society
    titleOn the Observed Inverse Relationship between Rainfall Amount and Dissolved Mineral Content
    typeJournal Paper
    journal volume20
    journal issue6
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/JHM-D-18-0204.1
    journal fristpage1235
    journal lastpage1240
    treeJournal of Hydrometeorology:;2019:;volume 020:;issue 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian