YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dynamical Aquaplanet Experiments with Uniform Thermal Forcing: System Dynamics and Implications for Tropical Cyclone Genesis and Size

    Source: Journal of the Atmospheric Sciences:;2019:;volume 076:;issue 008::page 2257
    Author:
    Chavas, Daniel R.
    ,
    Reed, Kevin A.
    DOI: 10.1175/JAS-D-19-0001.1
    Publisher: American Meteorological Society
    Abstract: AbstractExisting hypotheses for the dynamical dependence of tropical cyclone genesis and size on latitude depend principally on the Coriolis parameter f. These hypotheses are tested via dynamical aquaplanet experiments with uniform thermal forcing in which planetary rotation rate and planetary radius are varied relative to Earth values; the control simulation is also compared to a present-day Earth simulation. Storm genesis rate collapses to a quasi-universal dependence on f that attains its maximum at the critical latitude, where the inverse-f scale and Rhines scale are equal. Minimum genesis distance from the equator is set by the equatorial Rhines (or deformation) scale and not by a minimum value of f. Outer storm size qualitatively follows the smaller of the two length scales, including a slow increase with latitude equatorward of 45° in the control simulation, similar to the Earth simulation. The latitude of peak size scales with the critical latitude for varying planetary radius but not rotation rate, possibly because of the dependence of genesis specifically on f. The latitudes of peak size and peak packing density scale closely together. Results suggest that temporal effects and interstorm interaction may be significant for size dynamics. More generally, the critical latitude separates two regimes: 1) a mixed wave?cyclone equatorial belt, where wave effects are strong and the Rhines scale likely limits storm size, and 2) a cyclone-filled polar cap, where wave effects are weak and cyclones persist. The large-planet limit predicts a world nearly covered with long-lived storms, equivalent to the f plane. Overall, spherical geometry is likely important for understanding tropical cyclone genesis and size on Earthlike planets.
    • Download: (2.386Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dynamical Aquaplanet Experiments with Uniform Thermal Forcing: System Dynamics and Implications for Tropical Cyclone Genesis and Size

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4263688
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorChavas, Daniel R.
    contributor authorReed, Kevin A.
    date accessioned2019-10-05T06:52:16Z
    date available2019-10-05T06:52:16Z
    date copyright5/13/2019 12:00:00 AM
    date issued2019
    identifier otherJAS-D-19-0001.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4263688
    description abstractAbstractExisting hypotheses for the dynamical dependence of tropical cyclone genesis and size on latitude depend principally on the Coriolis parameter f. These hypotheses are tested via dynamical aquaplanet experiments with uniform thermal forcing in which planetary rotation rate and planetary radius are varied relative to Earth values; the control simulation is also compared to a present-day Earth simulation. Storm genesis rate collapses to a quasi-universal dependence on f that attains its maximum at the critical latitude, where the inverse-f scale and Rhines scale are equal. Minimum genesis distance from the equator is set by the equatorial Rhines (or deformation) scale and not by a minimum value of f. Outer storm size qualitatively follows the smaller of the two length scales, including a slow increase with latitude equatorward of 45° in the control simulation, similar to the Earth simulation. The latitude of peak size scales with the critical latitude for varying planetary radius but not rotation rate, possibly because of the dependence of genesis specifically on f. The latitudes of peak size and peak packing density scale closely together. Results suggest that temporal effects and interstorm interaction may be significant for size dynamics. More generally, the critical latitude separates two regimes: 1) a mixed wave?cyclone equatorial belt, where wave effects are strong and the Rhines scale likely limits storm size, and 2) a cyclone-filled polar cap, where wave effects are weak and cyclones persist. The large-planet limit predicts a world nearly covered with long-lived storms, equivalent to the f plane. Overall, spherical geometry is likely important for understanding tropical cyclone genesis and size on Earthlike planets.
    publisherAmerican Meteorological Society
    titleDynamical Aquaplanet Experiments with Uniform Thermal Forcing: System Dynamics and Implications for Tropical Cyclone Genesis and Size
    typeJournal Paper
    journal volume76
    journal issue8
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-19-0001.1
    journal fristpage2257
    journal lastpage2274
    treeJournal of the Atmospheric Sciences:;2019:;volume 076:;issue 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian