YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Decomposition of Vertical Velocity for Nutrient Transport in the Upper Ocean

    Source: Journal of Physical Oceanography:;2019:;volume 049:;issue 006::page 1561
    Author:
    Freilich, Mara A.
    ,
    Mahadevan, Amala
    DOI: 10.1175/JPO-D-19-0002.1
    Publisher: American Meteorological Society
    Abstract: AbstractWithin the pycnocline, where diapycnal mixing is suppressed, both the vertical movement (uplift) of isopycnal surfaces and upward motion along sloping isopycnals supply nutrients to the euphotic layer, but the relative importance of each of these mechanisms is unknown. We present a method for decomposing vertical velocity w into two components in a Lagrangian frame: vertical velocity along sloping isopycnal surfaces and the adiabatic vertical velocity of isopycnal surfaces . We show that , where is the isopycnal slope and is the geometric aspect ratio of the flow, and that accounts for 10%?25% of the total vertical velocity w for isopycnal slopes representative of the midlatitude pycnocline. We perform the decomposition of w in a process study model of a midlatitude eddying flow field generated with a range of isopycnal slopes. A spectral decomposition of the velocity components shows that while is the largest contributor to vertical velocity, is of comparable magnitude at horizontal scales less than about 10 km, that is, at submesoscales. Increasing the horizontal grid resolution of models is known to increase vertical velocity; this increase is disproportionately due to better resolution of , as is shown here by comparing 1- and 4-km resolution model runs. Along-isopycnal vertical transport can be an important contributor to the vertical flux of tracers, including oxygen, nutrients, and chlorophyll, although we find weak covariance between vertical velocity and nutrient anomaly in our model.
    • Download: (1.912Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Decomposition of Vertical Velocity for Nutrient Transport in the Upper Ocean

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4263482
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorFreilich, Mara A.
    contributor authorMahadevan, Amala
    date accessioned2019-10-05T06:48:33Z
    date available2019-10-05T06:48:33Z
    date copyright4/17/2019 12:00:00 AM
    date issued2019
    identifier otherJPO-D-19-0002.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4263482
    description abstractAbstractWithin the pycnocline, where diapycnal mixing is suppressed, both the vertical movement (uplift) of isopycnal surfaces and upward motion along sloping isopycnals supply nutrients to the euphotic layer, but the relative importance of each of these mechanisms is unknown. We present a method for decomposing vertical velocity w into two components in a Lagrangian frame: vertical velocity along sloping isopycnal surfaces and the adiabatic vertical velocity of isopycnal surfaces . We show that , where is the isopycnal slope and is the geometric aspect ratio of the flow, and that accounts for 10%?25% of the total vertical velocity w for isopycnal slopes representative of the midlatitude pycnocline. We perform the decomposition of w in a process study model of a midlatitude eddying flow field generated with a range of isopycnal slopes. A spectral decomposition of the velocity components shows that while is the largest contributor to vertical velocity, is of comparable magnitude at horizontal scales less than about 10 km, that is, at submesoscales. Increasing the horizontal grid resolution of models is known to increase vertical velocity; this increase is disproportionately due to better resolution of , as is shown here by comparing 1- and 4-km resolution model runs. Along-isopycnal vertical transport can be an important contributor to the vertical flux of tracers, including oxygen, nutrients, and chlorophyll, although we find weak covariance between vertical velocity and nutrient anomaly in our model.
    publisherAmerican Meteorological Society
    titleDecomposition of Vertical Velocity for Nutrient Transport in the Upper Ocean
    typeJournal Paper
    journal volume49
    journal issue6
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO-D-19-0002.1
    journal fristpage1561
    journal lastpage1575
    treeJournal of Physical Oceanography:;2019:;volume 049:;issue 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian