YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Spatiotemporal Variability of the Global Ocean Internal Processes Inferred from Satellite Observations

    Source: Journal of Physical Oceanography:;2019:;volume 049:;issue 008::page 2147
    Author:
    Yang, Yang
    ,
    San Liang, X.
    DOI: 10.1175/JPO-D-18-0273.1
    Publisher: American Meteorological Society
    Abstract: AbstractUsing a new analysis tool, namely, multiscale window transform (MWT), and the MWT-based theory of canonical transfer, this study investigates the spatiotemporal variations of the nonlinear interactions among the mean flows, interannual variabilities, quasi-annual fluctuations, and eddies in the global ocean. It is found that the canonical kinetic energy (KE) transfers are highly inhomogeneous in space, maximized in the western boundary current (WBC), Southern Ocean, and equatorial regions. In contrast to the equatorial and WBC regions where the temporal KE cascades are mainly forward, the Southern Ocean is the very place where coherent large-scale patterns of inverse KE cascade take place. The canonical transfers are also found to be highly variable in time. Specifically, in the Kuroshio Extension, the transfer from the mean flow to the interannual variability is in pace with the external winds from the eastern North Pacific; in the subtropical gyre, the mean flow-to-eddy transfer is responsible for the variability of the eddy kinetic energies (EKE) at both interannual and seasonal scales; in the tropics, the downscale transfers to the eddies from the other three scales all contribute to the interannual modulation of the EKE, and these transfers tend to decrease (increase) during El Niño (La Niña) events. In the Southern Ocean, the high-frequency eddies are found to feed KE to the low-frequency variability through temporal inverse cascade processes, which have been strengthened due to the enhanced eddy activities in the recent decade. Also discussed here is the relation between the seasonal EKE variability and the eddy?quasi-annual fluctuation interaction.
    • Download: (3.794Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Spatiotemporal Variability of the Global Ocean Internal Processes Inferred from Satellite Observations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4263480
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorYang, Yang
    contributor authorSan Liang, X.
    date accessioned2019-10-05T06:48:31Z
    date available2019-10-05T06:48:31Z
    date copyright6/14/2019 12:00:00 AM
    date issued2019
    identifier otherJPO-D-18-0273.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4263480
    description abstractAbstractUsing a new analysis tool, namely, multiscale window transform (MWT), and the MWT-based theory of canonical transfer, this study investigates the spatiotemporal variations of the nonlinear interactions among the mean flows, interannual variabilities, quasi-annual fluctuations, and eddies in the global ocean. It is found that the canonical kinetic energy (KE) transfers are highly inhomogeneous in space, maximized in the western boundary current (WBC), Southern Ocean, and equatorial regions. In contrast to the equatorial and WBC regions where the temporal KE cascades are mainly forward, the Southern Ocean is the very place where coherent large-scale patterns of inverse KE cascade take place. The canonical transfers are also found to be highly variable in time. Specifically, in the Kuroshio Extension, the transfer from the mean flow to the interannual variability is in pace with the external winds from the eastern North Pacific; in the subtropical gyre, the mean flow-to-eddy transfer is responsible for the variability of the eddy kinetic energies (EKE) at both interannual and seasonal scales; in the tropics, the downscale transfers to the eddies from the other three scales all contribute to the interannual modulation of the EKE, and these transfers tend to decrease (increase) during El Niño (La Niña) events. In the Southern Ocean, the high-frequency eddies are found to feed KE to the low-frequency variability through temporal inverse cascade processes, which have been strengthened due to the enhanced eddy activities in the recent decade. Also discussed here is the relation between the seasonal EKE variability and the eddy?quasi-annual fluctuation interaction.
    publisherAmerican Meteorological Society
    titleSpatiotemporal Variability of the Global Ocean Internal Processes Inferred from Satellite Observations
    typeJournal Paper
    journal volume49
    journal issue8
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO-D-18-0273.1
    journal fristpage2147
    journal lastpage2164
    treeJournal of Physical Oceanography:;2019:;volume 049:;issue 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian