YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Stratification Effects in the Turbulent Boundary Layer beneath a Melting Ice Shelf: Insights from Resolved Large-Eddy Simulations

    Source: Journal of Physical Oceanography:;2019:;volume 049:;issue 007::page 1905
    Author:
    Vreugdenhil, Catherine A.
    ,
    Taylor, John R.
    DOI: 10.1175/JPO-D-18-0252.1
    Publisher: American Meteorological Society
    Abstract: AbstractOcean turbulence contributes to the basal melting and dissolution of ice shelves by transporting heat and salt toward the ice. The meltwater causes a stable salinity stratification to form beneath the ice that suppresses turbulence. Here we use large-eddy simulations motivated by the ice shelf?ocean boundary layer (ISOBL) to examine the inherently linked processes of turbulence and stratification, and their influence on the melt rate. Our rectangular domain is bounded from above by the ice base where a dynamic melt condition is imposed. By varying the speed of the flow and the ambient temperature, we identify a fully turbulent, well-mixed regime and an intermittently turbulent, strongly stratified regime. The transition between regimes can be characterized by comparing the Obukhov length, which provides a measure of the distance away from the ice base where stratification begins to dominate the flow, to the viscous length scale of the interfacial sublayer. Upper limits on simulated turbulent transfer coefficients are used to predict the transition from fully to intermittently turbulent flow. The predicted melt rate is sensitive to the choice of the heat and salt transfer coefficients and the drag coefficient. For example, when coefficients characteristic of fully developed turbulence are applied to intermittent flow, the parameterized three-equation model overestimates the basal melt rate by almost a factor of 10. These insights may help to guide when existing parameterizations of ice melt are appropriate for use in regional or large-scale ocean models, and may also have implications for other ice?ocean interactions such as fast ice or drifting ice.
    • Download: (1.718Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Stratification Effects in the Turbulent Boundary Layer beneath a Melting Ice Shelf: Insights from Resolved Large-Eddy Simulations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4263473
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorVreugdenhil, Catherine A.
    contributor authorTaylor, John R.
    date accessioned2019-10-05T06:48:24Z
    date available2019-10-05T06:48:24Z
    date copyright5/6/2019 12:00:00 AM
    date issued2019
    identifier otherJPO-D-18-0252.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4263473
    description abstractAbstractOcean turbulence contributes to the basal melting and dissolution of ice shelves by transporting heat and salt toward the ice. The meltwater causes a stable salinity stratification to form beneath the ice that suppresses turbulence. Here we use large-eddy simulations motivated by the ice shelf?ocean boundary layer (ISOBL) to examine the inherently linked processes of turbulence and stratification, and their influence on the melt rate. Our rectangular domain is bounded from above by the ice base where a dynamic melt condition is imposed. By varying the speed of the flow and the ambient temperature, we identify a fully turbulent, well-mixed regime and an intermittently turbulent, strongly stratified regime. The transition between regimes can be characterized by comparing the Obukhov length, which provides a measure of the distance away from the ice base where stratification begins to dominate the flow, to the viscous length scale of the interfacial sublayer. Upper limits on simulated turbulent transfer coefficients are used to predict the transition from fully to intermittently turbulent flow. The predicted melt rate is sensitive to the choice of the heat and salt transfer coefficients and the drag coefficient. For example, when coefficients characteristic of fully developed turbulence are applied to intermittent flow, the parameterized three-equation model overestimates the basal melt rate by almost a factor of 10. These insights may help to guide when existing parameterizations of ice melt are appropriate for use in regional or large-scale ocean models, and may also have implications for other ice?ocean interactions such as fast ice or drifting ice.
    publisherAmerican Meteorological Society
    titleStratification Effects in the Turbulent Boundary Layer beneath a Melting Ice Shelf: Insights from Resolved Large-Eddy Simulations
    typeJournal Paper
    journal volume49
    journal issue7
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO-D-18-0252.1
    journal fristpage1905
    journal lastpage1925
    treeJournal of Physical Oceanography:;2019:;volume 049:;issue 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian