YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Tropical Cyclone Rain Retrievals from FY-3B MWRI Brightness Temperatures Using the Goddard Profiling Algorithm (GPROF)

    Source: Journal of Atmospheric and Oceanic Technology:;2019:;volume 036:;issue 005::page 849
    Author:
    Zhang, Ruanyu
    ,
    Kummerow, Christian D.
    ,
    Randel, David L.
    ,
    Brown, Paula J.
    ,
    Berg, Wesley
    ,
    Wang, Zhenzhan
    DOI: 10.1175/JTECH-D-18-0167.1
    Publisher: American Meteorological Society
    Abstract: AbstractThis study focuses on the tropical cyclone rainfall retrieval using FY-3B Microwave Radiation Imager (MWRI) brightness temperatures (Tbs). The GPROF, a fully parametric approach based on the Bayesian scheme, is adapted for use by the MWRI sensor. The MWRI GPROF algorithm is an ocean-only scheme used to estimate rain rates and hydrometeor vertical profiles. An a priori database is constructed from MWRI simulated Tbs, the GPM Microwave Imager (GMI) and Dual-Frequency Precipitation Radar (DPR) combined data, and ancillary data resulting in about 100 000 rainfall profiles. The performance of MWRI retrievals is consistent with DPR observations, even though MWRI retrievals slightly overestimate low rain rates and underestimate high rain rates. The total bias of MWRI retrievals is less than 13% of the mean rain rate of DPR precipitation. Statistical comparisons over GMI GPROF, GMI Hurricane GPROF (HGPROF), and MWRI GPROF retrievals show MWRI GPROF retrievals are consistent in terms of spatial distribution and rain estimates for TCs compared with the other two estimates. In terms of the global precipitation, the mean rain rates at different distances from best track locations for five TC categories are used to identify substantial differences between mean MWRI and GMI GPROF retrievals. After correcting the biases between MWRI and GMI retrievals, the performance of MWRI retrievals shows slight overestimate for light rain rates while underestimating rain rates near the eyewall for category 4 and 5 only.
    • Download: (7.878Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Tropical Cyclone Rain Retrievals from FY-3B MWRI Brightness Temperatures Using the Goddard Profiling Algorithm (GPROF)

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4263378
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorZhang, Ruanyu
    contributor authorKummerow, Christian D.
    contributor authorRandel, David L.
    contributor authorBrown, Paula J.
    contributor authorBerg, Wesley
    contributor authorWang, Zhenzhan
    date accessioned2019-10-05T06:46:31Z
    date available2019-10-05T06:46:31Z
    date copyright3/26/2019 12:00:00 AM
    date issued2019
    identifier otherJTECH-D-18-0167.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4263378
    description abstractAbstractThis study focuses on the tropical cyclone rainfall retrieval using FY-3B Microwave Radiation Imager (MWRI) brightness temperatures (Tbs). The GPROF, a fully parametric approach based on the Bayesian scheme, is adapted for use by the MWRI sensor. The MWRI GPROF algorithm is an ocean-only scheme used to estimate rain rates and hydrometeor vertical profiles. An a priori database is constructed from MWRI simulated Tbs, the GPM Microwave Imager (GMI) and Dual-Frequency Precipitation Radar (DPR) combined data, and ancillary data resulting in about 100 000 rainfall profiles. The performance of MWRI retrievals is consistent with DPR observations, even though MWRI retrievals slightly overestimate low rain rates and underestimate high rain rates. The total bias of MWRI retrievals is less than 13% of the mean rain rate of DPR precipitation. Statistical comparisons over GMI GPROF, GMI Hurricane GPROF (HGPROF), and MWRI GPROF retrievals show MWRI GPROF retrievals are consistent in terms of spatial distribution and rain estimates for TCs compared with the other two estimates. In terms of the global precipitation, the mean rain rates at different distances from best track locations for five TC categories are used to identify substantial differences between mean MWRI and GMI GPROF retrievals. After correcting the biases between MWRI and GMI retrievals, the performance of MWRI retrievals shows slight overestimate for light rain rates while underestimating rain rates near the eyewall for category 4 and 5 only.
    publisherAmerican Meteorological Society
    titleTropical Cyclone Rain Retrievals from FY-3B MWRI Brightness Temperatures Using the Goddard Profiling Algorithm (GPROF)
    typeJournal Paper
    journal volume36
    journal issue5
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH-D-18-0167.1
    journal fristpage849
    journal lastpage864
    treeJournal of Atmospheric and Oceanic Technology:;2019:;volume 036:;issue 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian