YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Detection of Fronts as a Metric for Numerical Model Accuracy

    Source: Journal of Atmospheric and Oceanic Technology:;2019:;volume 036:;issue 008::page 1547
    Author:
    Douglass, Elizabeth M.
    ,
    Mask, Andrea C.
    DOI: 10.1175/JTECH-D-18-0106.1
    Publisher: American Meteorological Society
    Abstract: AbstractAs numerical modeling advances, quantitative metrics are necessary to determine whether the model output accurately represents the observed ocean. Here, a metric is developed based on whether a model places oceanic fronts in the proper location. Fronts are observed and assessed directly from along-track satellite altimetry. Numerical model output is then interpolated to the locations of the along-track data, and fronts are detected in the model output. Scores are determined from the percentage of observed fronts correctly simulated in the model and from the percentage of modeled fronts confirmed by observations. These scores depend on certain parameters such as the minimum size of a front, which will be shown to be geographically dependent. An analysis of two models, the Hybrid Coordinate Ocean Model (HYCOM) and the Navy Coastal Ocean Model (NCOM), is presented as an example of how this metric might be applied and interpreted. In this example, scores are found to be relatively stable in time, but strongly dependent on the mesoscale variability in the region of interest. In all cases, the metric indicates that there are more observed fronts not found in the models than there are modeled fronts missing from observations. In addition to the score itself, the analysis demonstrates that modeled fronts have smaller amplitude and are less steep than observed fronts.
    • Download: (1.450Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Detection of Fronts as a Metric for Numerical Model Accuracy

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4263345
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorDouglass, Elizabeth M.
    contributor authorMask, Andrea C.
    date accessioned2019-10-05T06:45:53Z
    date available2019-10-05T06:45:53Z
    date copyright3/1/2019 12:00:00 AM
    date issued2019
    identifier otherJTECH-D-18-0106.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4263345
    description abstractAbstractAs numerical modeling advances, quantitative metrics are necessary to determine whether the model output accurately represents the observed ocean. Here, a metric is developed based on whether a model places oceanic fronts in the proper location. Fronts are observed and assessed directly from along-track satellite altimetry. Numerical model output is then interpolated to the locations of the along-track data, and fronts are detected in the model output. Scores are determined from the percentage of observed fronts correctly simulated in the model and from the percentage of modeled fronts confirmed by observations. These scores depend on certain parameters such as the minimum size of a front, which will be shown to be geographically dependent. An analysis of two models, the Hybrid Coordinate Ocean Model (HYCOM) and the Navy Coastal Ocean Model (NCOM), is presented as an example of how this metric might be applied and interpreted. In this example, scores are found to be relatively stable in time, but strongly dependent on the mesoscale variability in the region of interest. In all cases, the metric indicates that there are more observed fronts not found in the models than there are modeled fronts missing from observations. In addition to the score itself, the analysis demonstrates that modeled fronts have smaller amplitude and are less steep than observed fronts.
    publisherAmerican Meteorological Society
    titleDetection of Fronts as a Metric for Numerical Model Accuracy
    typeJournal Paper
    journal volume36
    journal issue8
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH-D-18-0106.1
    journal fristpage1547
    journal lastpage1561
    treeJournal of Atmospheric and Oceanic Technology:;2019:;volume 036:;issue 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian