YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Use of Geophysical Parameters for the Top-of-Atmosphere Shortwave Clear-Sky Radiance-to-Flux Conversion in EarthCARE

    Source: Journal of Atmospheric and Oceanic Technology:;2019:;volume 036:;issue 004::page 717
    Author:
    Tornow, F.
    ,
    Domenech, C.
    ,
    Fischer, J.
    DOI: 10.1175/JTECH-D-18-0087.1
    Publisher: American Meteorological Society
    Abstract: AbstractWe have investigated whether differences across Clouds and the Earth?s Radiant Energy System (CERES) top-of-atmosphere (TOA) clear-sky angular distribution models, estimated separately over regional (1° ? 1° longitude?latitude) and temporal (monthly) bins above land, can be explained by geophysical parameters from Max Planck Institute Aerosol Climatology, version 1 (MAC-v1), ECMWF twentieth-century reanalysis (ERA-20C), and a MODIS bidirectional reflectance distribution function (BRDF)/albedo/nadir BRDF-adjusted reflectance (NBAR) Climate Modeling Grid (CMG) gap-filled products (MCD43GF) climatology. Our research aimed to dissolve binning and to isolate inherent properties or indicators of such properties, which govern the TOA radiance-to-flux conversion in the absence of clouds. We collocated over seven million clear-sky footprints from CERES Single Scanner Footprint (SSF), edition 4, data with above geophysical auxiliary data. Looking at data per surface type and per scattering direction?as perceived by the broadband radiometer (BBR) on board Earth Clouds, Aerosol and Radiation Explorer (EarthCARE)?we identified optimal subsets of geophysical parameters using two different methods: random forest regression followed by a permutation test and multiple linear regression combined with the genetic algorithm. Using optimal subsets, we then trained artificial neural networks (ANNs). Flux error standard deviations on unseen test data were on average 2.7?4.0 W m?2, well below the 10 W m?2 flux accuracy threshold defined for the mission, with the exception of footprints containing fresh snow. Dynamic surface types (i.e., fresh snow and sea ice) required simpler ANN input sets to guarantee mission-worthy flux estimates, especially over footprints consisting of several surface types.
    • Download: (1.834Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Use of Geophysical Parameters for the Top-of-Atmosphere Shortwave Clear-Sky Radiance-to-Flux Conversion in EarthCARE

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4263337
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorTornow, F.
    contributor authorDomenech, C.
    contributor authorFischer, J.
    date accessioned2019-10-05T06:45:43Z
    date available2019-10-05T06:45:43Z
    date copyright2/15/2019 12:00:00 AM
    date issued2019
    identifier otherJTECH-D-18-0087.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4263337
    description abstractAbstractWe have investigated whether differences across Clouds and the Earth?s Radiant Energy System (CERES) top-of-atmosphere (TOA) clear-sky angular distribution models, estimated separately over regional (1° ? 1° longitude?latitude) and temporal (monthly) bins above land, can be explained by geophysical parameters from Max Planck Institute Aerosol Climatology, version 1 (MAC-v1), ECMWF twentieth-century reanalysis (ERA-20C), and a MODIS bidirectional reflectance distribution function (BRDF)/albedo/nadir BRDF-adjusted reflectance (NBAR) Climate Modeling Grid (CMG) gap-filled products (MCD43GF) climatology. Our research aimed to dissolve binning and to isolate inherent properties or indicators of such properties, which govern the TOA radiance-to-flux conversion in the absence of clouds. We collocated over seven million clear-sky footprints from CERES Single Scanner Footprint (SSF), edition 4, data with above geophysical auxiliary data. Looking at data per surface type and per scattering direction?as perceived by the broadband radiometer (BBR) on board Earth Clouds, Aerosol and Radiation Explorer (EarthCARE)?we identified optimal subsets of geophysical parameters using two different methods: random forest regression followed by a permutation test and multiple linear regression combined with the genetic algorithm. Using optimal subsets, we then trained artificial neural networks (ANNs). Flux error standard deviations on unseen test data were on average 2.7?4.0 W m?2, well below the 10 W m?2 flux accuracy threshold defined for the mission, with the exception of footprints containing fresh snow. Dynamic surface types (i.e., fresh snow and sea ice) required simpler ANN input sets to guarantee mission-worthy flux estimates, especially over footprints consisting of several surface types.
    publisherAmerican Meteorological Society
    titleOn the Use of Geophysical Parameters for the Top-of-Atmosphere Shortwave Clear-Sky Radiance-to-Flux Conversion in EarthCARE
    typeJournal Paper
    journal volume36
    journal issue4
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH-D-18-0087.1
    journal fristpage717
    journal lastpage732
    treeJournal of Atmospheric and Oceanic Technology:;2019:;volume 036:;issue 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian