YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Roles of Dynamic Forcings and Diabatic Heating in Summer Extreme Precipitation in East China and the Southeastern United States

    Source: Journal of Climate:;2019:;volume 032:;issue 018::page 5815
    Author:
    Nie, Ji
    ,
    Fan, Bowen
    DOI: 10.1175/JCLI-D-19-0188.1
    Publisher: American Meteorological Society
    Abstract: AbstractExtratropical regional-scale extreme precipitation events (EPEs) are usually associated with certain synoptic perturbations superimposed on slow-varying background circulations. These perturbations induce a dynamically forced ascent that destabilizes the atmospheric stratification and stimulates deep convection, which further drives the perturbation by releasing latent heat. This study identifies the characteristics of large-scale perturbations associated with summer EPEs in two representative regions, East China (ECN) and the southeastern United States (SUS), and analyzes the roles of dynamic forcings and diabatic heating using the quasigeostrophic omega equation. Composites of 39 events in each region show that the upper-level absolute vorticity advection and tropospheric warm advection promote dynamically forced ascent in EPEs, and the moisture advection premoistens the local environment. The background circulation and synoptic perturbations in ECN and the SUS have significant differences. The background vorticity, temperature, and moisture advection form the quasi-steady mei-yu front in ECN, which provides favorable conditions for heavy rainfall. In the SUS, weaker background ascents are forced mainly through vorticity advection. In the synoptic scale, the EPEs in ECN are triggered by short-wavelength wave trains, and in the SUS the EPEs are triggered by longer wavelength potential vorticity intrusions. Although the amplitudes of the dynamically forced ascent in the two regions are similar, diabatic heating contributes much more to the vertical motion in ECN than the SUS, which indicates that there is stronger diabatic heating feedback there. The stronger diabatic heating feedback in ECN appears to be due to stronger moisture advection, convective environments with more humidity, and stronger coupling between convection and large-scale dynamics.
    • Download: (2.995Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Roles of Dynamic Forcings and Diabatic Heating in Summer Extreme Precipitation in East China and the Southeastern United States

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4263261
    Collections
    • Journal of Climate

    Show full item record

    contributor authorNie, Ji
    contributor authorFan, Bowen
    date accessioned2019-10-05T06:44:11Z
    date available2019-10-05T06:44:11Z
    date copyright6/19/2019 12:00:00 AM
    date issued2019
    identifier otherJCLI-D-19-0188.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4263261
    description abstractAbstractExtratropical regional-scale extreme precipitation events (EPEs) are usually associated with certain synoptic perturbations superimposed on slow-varying background circulations. These perturbations induce a dynamically forced ascent that destabilizes the atmospheric stratification and stimulates deep convection, which further drives the perturbation by releasing latent heat. This study identifies the characteristics of large-scale perturbations associated with summer EPEs in two representative regions, East China (ECN) and the southeastern United States (SUS), and analyzes the roles of dynamic forcings and diabatic heating using the quasigeostrophic omega equation. Composites of 39 events in each region show that the upper-level absolute vorticity advection and tropospheric warm advection promote dynamically forced ascent in EPEs, and the moisture advection premoistens the local environment. The background circulation and synoptic perturbations in ECN and the SUS have significant differences. The background vorticity, temperature, and moisture advection form the quasi-steady mei-yu front in ECN, which provides favorable conditions for heavy rainfall. In the SUS, weaker background ascents are forced mainly through vorticity advection. In the synoptic scale, the EPEs in ECN are triggered by short-wavelength wave trains, and in the SUS the EPEs are triggered by longer wavelength potential vorticity intrusions. Although the amplitudes of the dynamically forced ascent in the two regions are similar, diabatic heating contributes much more to the vertical motion in ECN than the SUS, which indicates that there is stronger diabatic heating feedback there. The stronger diabatic heating feedback in ECN appears to be due to stronger moisture advection, convective environments with more humidity, and stronger coupling between convection and large-scale dynamics.
    publisherAmerican Meteorological Society
    titleRoles of Dynamic Forcings and Diabatic Heating in Summer Extreme Precipitation in East China and the Southeastern United States
    typeJournal Paper
    journal volume32
    journal issue18
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-19-0188.1
    journal fristpage5815
    journal lastpage5831
    treeJournal of Climate:;2019:;volume 032:;issue 018
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian