YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Moisture Origins of Tornadic Thunderstorms

    Source: Journal of Climate:;2019:;volume 032:;issue 014::page 4321
    Author:
    Molina, Maria J.
    ,
    Allen, John T.
    DOI: 10.1175/JCLI-D-18-0784.1
    Publisher: American Meteorological Society
    Abstract: AbstractTornadic thunderstorms rely on the availability of sufficient low-level moisture, but the source regions of that moisture have not been explicitly demarcated. Using the NOAA Air Resources Laboratory HYSPLIT model and a Lagrangian-based diagnostic, moisture attribution was conducted to identify the moisture source regions of tornadic convection. This study reveals a seasonal cycle in the origins and advection patterns of water vapor contributing to winter and spring tornado-producing storms (1981?2017). The Gulf of Mexico is shown to be the predominant source of moisture during both winter and spring, making up more than 50% of all contributions. During winter, substantial moisture contributions for tornadic convection also emanate from the western Caribbean Sea (>19%) and North Atlantic Ocean (>12%). During late spring, land areas (e.g., soil and vegetation) of the contiguous United States (CONUS) play a more influential role (>24%). Moisture attribution was also conducted for nontornadic cases and tornado outbreaks. Findings show that moisture sources of nontornadic events are more proximal to the CONUS than moisture sources of tornado outbreaks. Oceanic influences on the water vapor content of air parcels were also explored to determine if they can increase the likelihood of an air mass attaining moisture that will eventually contribute to severe thunderstorms. Warmer sea surface temperatures were generally found to enhance evaporative fluxes of overlying air parcels. The influence of atmospheric features on synoptic-scale moisture advection was also analyzed; stronger extratropical cyclones and Great Plains low-level jet occurrences lead to increased meridional moisture flux.
    • Download: (7.531Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Moisture Origins of Tornadic Thunderstorms

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4263216
    Collections
    • Journal of Climate

    Show full item record

    contributor authorMolina, Maria J.
    contributor authorAllen, John T.
    date accessioned2019-10-05T06:43:21Z
    date available2019-10-05T06:43:21Z
    date copyright4/25/2019 12:00:00 AM
    date issued2019
    identifier otherJCLI-D-18-0784.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4263216
    description abstractAbstractTornadic thunderstorms rely on the availability of sufficient low-level moisture, but the source regions of that moisture have not been explicitly demarcated. Using the NOAA Air Resources Laboratory HYSPLIT model and a Lagrangian-based diagnostic, moisture attribution was conducted to identify the moisture source regions of tornadic convection. This study reveals a seasonal cycle in the origins and advection patterns of water vapor contributing to winter and spring tornado-producing storms (1981?2017). The Gulf of Mexico is shown to be the predominant source of moisture during both winter and spring, making up more than 50% of all contributions. During winter, substantial moisture contributions for tornadic convection also emanate from the western Caribbean Sea (>19%) and North Atlantic Ocean (>12%). During late spring, land areas (e.g., soil and vegetation) of the contiguous United States (CONUS) play a more influential role (>24%). Moisture attribution was also conducted for nontornadic cases and tornado outbreaks. Findings show that moisture sources of nontornadic events are more proximal to the CONUS than moisture sources of tornado outbreaks. Oceanic influences on the water vapor content of air parcels were also explored to determine if they can increase the likelihood of an air mass attaining moisture that will eventually contribute to severe thunderstorms. Warmer sea surface temperatures were generally found to enhance evaporative fluxes of overlying air parcels. The influence of atmospheric features on synoptic-scale moisture advection was also analyzed; stronger extratropical cyclones and Great Plains low-level jet occurrences lead to increased meridional moisture flux.
    publisherAmerican Meteorological Society
    titleOn the Moisture Origins of Tornadic Thunderstorms
    typeJournal Paper
    journal volume32
    journal issue14
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-18-0784.1
    journal fristpage4321
    journal lastpage4346
    treeJournal of Climate:;2019:;volume 032:;issue 014
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian