YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Temporal and Spatial Characteristics of Short-Term Cloud Feedback on Global and Local Interannual Climate Fluctuations from A-Train Observations

    Source: Journal of Climate:;2019:;volume 032:;issue 006::page 1875
    Author:
    Yue, Qing
    ,
    Kahn, Brian H.
    ,
    Fetzer, Eric J.
    ,
    Wong, Sun
    ,
    Huang, Xianglei
    ,
    Schreier, Mathias
    DOI: 10.1175/JCLI-D-18-0335.1
    Publisher: American Meteorological Society
    Abstract: AbstractObservations from multiple sensors on the NASA Aqua satellite are used to estimate the temporal and spatial variability of short-term cloud responses (CR) and cloud feedbacks ? for different cloud types, with respect to the interannual variability within the A-Train era (July 2002?June 2017). Short-term cloud feedbacks by cloud type are investigated both globally and locally by three different definitions in the literature: 1) the global-mean cloud feedback parameter ?GG from regressing the global-mean cloud-induced TOA radiation anomaly ?RG with the global-mean surface temperature change ?TGS; 2) the local feedback parameter ?LL from regressing the local ?R with the local surface temperature change ?TS; and 3) the local feedback parameter ?GL from regressing global ?RG with local ?TS. Observations show significant temporal variability in the magnitudes and spatial patterns in ?GG and ?GL, whereas ?LL remains essentially time invariant for different cloud types. The global-mean net ?GG exhibits a gradual transition from negative to positive in the A-Train era due to a less negative ?GG from low clouds and an increased positive ?GG from high clouds over the warm pool region associated with the 2015/16 strong El Niño event. Strong temporal variability in ?GL is intrinsically linked to its dependence on global ?RG, and the scaling of ?GL with surface temperature change patterns to obtain global feedback ?GG does not hold. Despite the shortness of the A-Train record, statistically robust signals can be obtained for different cloud types and regions of interest.
    • Download: (7.274Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Temporal and Spatial Characteristics of Short-Term Cloud Feedback on Global and Local Interannual Climate Fluctuations from A-Train Observations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4263062
    Collections
    • Journal of Climate

    Show full item record

    contributor authorYue, Qing
    contributor authorKahn, Brian H.
    contributor authorFetzer, Eric J.
    contributor authorWong, Sun
    contributor authorHuang, Xianglei
    contributor authorSchreier, Mathias
    date accessioned2019-10-05T06:40:28Z
    date available2019-10-05T06:40:28Z
    date copyright1/25/2019 12:00:00 AM
    date issued2019
    identifier otherJCLI-D-18-0335.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4263062
    description abstractAbstractObservations from multiple sensors on the NASA Aqua satellite are used to estimate the temporal and spatial variability of short-term cloud responses (CR) and cloud feedbacks ? for different cloud types, with respect to the interannual variability within the A-Train era (July 2002?June 2017). Short-term cloud feedbacks by cloud type are investigated both globally and locally by three different definitions in the literature: 1) the global-mean cloud feedback parameter ?GG from regressing the global-mean cloud-induced TOA radiation anomaly ?RG with the global-mean surface temperature change ?TGS; 2) the local feedback parameter ?LL from regressing the local ?R with the local surface temperature change ?TS; and 3) the local feedback parameter ?GL from regressing global ?RG with local ?TS. Observations show significant temporal variability in the magnitudes and spatial patterns in ?GG and ?GL, whereas ?LL remains essentially time invariant for different cloud types. The global-mean net ?GG exhibits a gradual transition from negative to positive in the A-Train era due to a less negative ?GG from low clouds and an increased positive ?GG from high clouds over the warm pool region associated with the 2015/16 strong El Niño event. Strong temporal variability in ?GL is intrinsically linked to its dependence on global ?RG, and the scaling of ?GL with surface temperature change patterns to obtain global feedback ?GG does not hold. Despite the shortness of the A-Train record, statistically robust signals can be obtained for different cloud types and regions of interest.
    publisherAmerican Meteorological Society
    titleTemporal and Spatial Characteristics of Short-Term Cloud Feedback on Global and Local Interannual Climate Fluctuations from A-Train Observations
    typeJournal Paper
    journal volume32
    journal issue6
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-18-0335.1
    journal fristpage1875
    journal lastpage1893
    treeJournal of Climate:;2019:;volume 032:;issue 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian