The Downward Influence of Sudden Stratospheric Warmings: Association with Tropospheric PrecursorsSource: Journal of Climate:;2018:;volume 032:;issue 001::page 85Author:White, Ian
,
Garfinkel, Chaim I.
,
Gerber, Edwin P.
,
Jucker, Martin
,
Aquila, Valentina
,
Oman, Luke D.
DOI: 10.1175/JCLI-D-18-0053.1Publisher: American Meteorological Society
Abstract: Tropospheric features preceding sudden stratospheric warming events (SSWs) are identified using a large compendium of events obtained from a chemistry?climate model. In agreement with recent observational studies, it is found that approximately one-third of SSWs are preceded by extreme episodes of wave activity in the lower troposphere. The relationship becomes stronger in the lower stratosphere, where ~60% of SSWs are preceded by extreme wave activity at 100 hPa. Additional analysis characterizes events that do or do not appear to subsequently impact the troposphere, referred to as downward and non-downward propagating SSWs, respectively. On average, tropospheric wave activity is larger preceding downward-propagating SSWs compared to non-downward propagating events, and associated in particular with a doubly strengthened Siberian high. Of the SSWs that were preceded by extreme lower-tropospheric wave activity, ~2/3 propagated down to the troposphere, and hence the presence of extreme lower-tropospheric wave activity can only be used probabilistically to predict a slight increase or decrease at the onset, of the likelihood of tropospheric impacts to follow. However, a large number of downward and non-downward propagating SSWs must be considered (>35), before the difference becomes statistically significant. The precursors are also robust upon comparison with composites consisting of randomly selected tropospheric northern annular mode (NAM) events. The downward influence and precursors to split and displacement events are also examined. It is found that anomalous upward wave-1 fluxes precede both cases. Splits exhibit a near instantaneous, barotropic response in the stratosphere and troposphere, while displacements have a stronger long-term influence.
|
Collections
Show full item record
contributor author | White, Ian | |
contributor author | Garfinkel, Chaim I. | |
contributor author | Gerber, Edwin P. | |
contributor author | Jucker, Martin | |
contributor author | Aquila, Valentina | |
contributor author | Oman, Luke D. | |
date accessioned | 2019-09-22T09:04:15Z | |
date available | 2019-09-22T09:04:15Z | |
date copyright | 10/17/2018 12:00:00 AM | |
date issued | 2018 | |
identifier other | JCLI-D-18-0053.1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4262728 | |
description abstract | Tropospheric features preceding sudden stratospheric warming events (SSWs) are identified using a large compendium of events obtained from a chemistry?climate model. In agreement with recent observational studies, it is found that approximately one-third of SSWs are preceded by extreme episodes of wave activity in the lower troposphere. The relationship becomes stronger in the lower stratosphere, where ~60% of SSWs are preceded by extreme wave activity at 100 hPa. Additional analysis characterizes events that do or do not appear to subsequently impact the troposphere, referred to as downward and non-downward propagating SSWs, respectively. On average, tropospheric wave activity is larger preceding downward-propagating SSWs compared to non-downward propagating events, and associated in particular with a doubly strengthened Siberian high. Of the SSWs that were preceded by extreme lower-tropospheric wave activity, ~2/3 propagated down to the troposphere, and hence the presence of extreme lower-tropospheric wave activity can only be used probabilistically to predict a slight increase or decrease at the onset, of the likelihood of tropospheric impacts to follow. However, a large number of downward and non-downward propagating SSWs must be considered (>35), before the difference becomes statistically significant. The precursors are also robust upon comparison with composites consisting of randomly selected tropospheric northern annular mode (NAM) events. The downward influence and precursors to split and displacement events are also examined. It is found that anomalous upward wave-1 fluxes precede both cases. Splits exhibit a near instantaneous, barotropic response in the stratosphere and troposphere, while displacements have a stronger long-term influence. | |
publisher | American Meteorological Society | |
title | The Downward Influence of Sudden Stratospheric Warmings: Association with Tropospheric Precursors | |
type | Journal Paper | |
journal volume | 32 | |
journal issue | 1 | |
journal title | Journal of Climate | |
identifier doi | 10.1175/JCLI-D-18-0053.1 | |
journal fristpage | 85 | |
journal lastpage | 108 | |
tree | Journal of Climate:;2018:;volume 032:;issue 001 | |
contenttype | Fulltext |