YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Earth Interactions
    • View Item
    •   YE&T Library
    • AMS
    • Earth Interactions
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Climate Impacts from Afforestation and Deforestation in Europe

    Source: Earth Interactions:;2018:;volume 023:;issue 001::page 1
    Author:
    Strandberg, G.
    ,
    Kjellström, E.
    DOI: 10.1175/EI-D-17-0033.1
    Publisher: American Meteorological Society
    Abstract: Changes in vegetation are known to have an impact on climate via biogeophysical effects such as changes in albedo and heat fluxes. Here, the effects of maximum afforestation and deforestation are studied over Europe. This is done by comparing three regional climate model simulations?one with present-day vegetation, one with maximum afforestation, and one with maximum deforestation. In general, afforestation leads to more evapotranspiration (ET), which leads to decreased near-surface temperature, whereas deforestation leads to less ET, which leads to increased temperature. There are exceptions, mainly in regions with little water available for ET. In such regions, changes in albedo are relatively more important for temperature. The simulated biogeophysical effect on seasonal mean temperature varies between 0.5° and 3°C across Europe. The effect on minimum and maximum temperature is larger than that on mean temperature. Increased (decreased) mean temperature is associated with an even larger increase (decrease) in maximum summer (minimum winter) temperature. The effect on precipitation is found to be small. Two additional simulations in which vegetation is changed in only one-half of the domain were also performed. These simulations show that the climatic effects from changed vegetation in Europe are local. The results imply that vegetation changes have had, and will have, a significant impact on local climate in Europe; the climatic response is comparable to climate change under RCP2.6. Therefore, effects from vegetation change should be taken into account when simulating past, present, and future climate for this region. The results also imply that vegetation changes could be used to mitigate local climate change.
    • Download: (6.560Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Climate Impacts from Afforestation and Deforestation in Europe

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4262723
    Collections
    • Earth Interactions

    Show full item record

    contributor authorStrandberg, G.
    contributor authorKjellström, E.
    date accessioned2019-09-22T09:04:14Z
    date available2019-09-22T09:04:14Z
    date copyright10/19/2018 12:00:00 AM
    date issued2018
    identifier otherEI-D-17-0033.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4262723
    description abstractChanges in vegetation are known to have an impact on climate via biogeophysical effects such as changes in albedo and heat fluxes. Here, the effects of maximum afforestation and deforestation are studied over Europe. This is done by comparing three regional climate model simulations?one with present-day vegetation, one with maximum afforestation, and one with maximum deforestation. In general, afforestation leads to more evapotranspiration (ET), which leads to decreased near-surface temperature, whereas deforestation leads to less ET, which leads to increased temperature. There are exceptions, mainly in regions with little water available for ET. In such regions, changes in albedo are relatively more important for temperature. The simulated biogeophysical effect on seasonal mean temperature varies between 0.5° and 3°C across Europe. The effect on minimum and maximum temperature is larger than that on mean temperature. Increased (decreased) mean temperature is associated with an even larger increase (decrease) in maximum summer (minimum winter) temperature. The effect on precipitation is found to be small. Two additional simulations in which vegetation is changed in only one-half of the domain were also performed. These simulations show that the climatic effects from changed vegetation in Europe are local. The results imply that vegetation changes have had, and will have, a significant impact on local climate in Europe; the climatic response is comparable to climate change under RCP2.6. Therefore, effects from vegetation change should be taken into account when simulating past, present, and future climate for this region. The results also imply that vegetation changes could be used to mitigate local climate change.
    publisherAmerican Meteorological Society
    titleClimate Impacts from Afforestation and Deforestation in Europe
    typeJournal Paper
    journal volume23
    journal issue1
    journal titleEarth Interactions
    identifier doi10.1175/EI-D-17-0033.1
    journal fristpage1
    journal lastpage27
    treeEarth Interactions:;2018:;volume 023:;issue 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian