YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Impact of Assimilation of GPM Microwave Imager Clear-Sky Radiance on Numerical Simulations of Hurricanes Joaquin (2015) and Matthew (2016) with the HWRF Model

    Source: Monthly Weather Review:;2018:;volume 147:;issue 001::page 175
    Author:
    Pu, Zhaoxia
    ,
    Yu, Chaulam
    ,
    Tallapragada, Vijay
    ,
    Jin, Jianjun
    ,
    McCarty, Will
    DOI: 10.1175/MWR-D-17-0200.1
    Publisher: American Meteorological Society
    Abstract: The impact of assimilating Global Precipitation Measurement (GPM) Microwave Imager (GMI) clear-sky radiance on the track and intensity forecasts of two Atlantic hurricanes during the 2015 and 2016 hurricane seasons is assessed using the Hurricane Weather Research and Forecasting (HWRF) Model. The GMI clear-sky brightness temperature is assimilated using a Gridpoint Statistical Interpolation (GSI)-based hybrid ensemble?variational data assimilation system, which utilizes the Community Radiative Transfer Model (CRTM) as a forward operator for satellite sensors. A two-step bias correction approach, which combines a linear regression procedure and variational bias correction, is used to remove most of the systematic biases prior to data assimilation. Forecast results show that assimilating GMI clear-sky radiance has positive impacts on both track and intensity forecasts, with the extent depending on the phase of hurricane evolution. Forecast verifications against dropsonde soundings and reanalysis data show that assimilating GMI clear-sky radiance, when it does not overlap with overpasses of other microwave sounders, can improve forecasts of both thermodynamic (e.g., temperature and specific humidity) and dynamic variables (geopotential height and wind field), which in turn lead to better track forecasts and a more realistic hurricane inner-core structure. Even when other microwave sounders are present (e.g., AMSU-A, ATMS, MHS, etc.), the assimilation of GMI still reduces temperature forecast errors in the near-hurricane environment, which has a significant impact on the intensity forecast.
    • Download: (6.457Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Impact of Assimilation of GPM Microwave Imager Clear-Sky Radiance on Numerical Simulations of Hurricanes Joaquin (2015) and Matthew (2016) with the HWRF Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4262689
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorPu, Zhaoxia
    contributor authorYu, Chaulam
    contributor authorTallapragada, Vijay
    contributor authorJin, Jianjun
    contributor authorMcCarty, Will
    date accessioned2019-09-22T09:04:00Z
    date available2019-09-22T09:04:00Z
    date copyright10/24/2018 12:00:00 AM
    date issued2018
    identifier otherMWR-D-17-0200.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4262689
    description abstractThe impact of assimilating Global Precipitation Measurement (GPM) Microwave Imager (GMI) clear-sky radiance on the track and intensity forecasts of two Atlantic hurricanes during the 2015 and 2016 hurricane seasons is assessed using the Hurricane Weather Research and Forecasting (HWRF) Model. The GMI clear-sky brightness temperature is assimilated using a Gridpoint Statistical Interpolation (GSI)-based hybrid ensemble?variational data assimilation system, which utilizes the Community Radiative Transfer Model (CRTM) as a forward operator for satellite sensors. A two-step bias correction approach, which combines a linear regression procedure and variational bias correction, is used to remove most of the systematic biases prior to data assimilation. Forecast results show that assimilating GMI clear-sky radiance has positive impacts on both track and intensity forecasts, with the extent depending on the phase of hurricane evolution. Forecast verifications against dropsonde soundings and reanalysis data show that assimilating GMI clear-sky radiance, when it does not overlap with overpasses of other microwave sounders, can improve forecasts of both thermodynamic (e.g., temperature and specific humidity) and dynamic variables (geopotential height and wind field), which in turn lead to better track forecasts and a more realistic hurricane inner-core structure. Even when other microwave sounders are present (e.g., AMSU-A, ATMS, MHS, etc.), the assimilation of GMI still reduces temperature forecast errors in the near-hurricane environment, which has a significant impact on the intensity forecast.
    publisherAmerican Meteorological Society
    titleThe Impact of Assimilation of GPM Microwave Imager Clear-Sky Radiance on Numerical Simulations of Hurricanes Joaquin (2015) and Matthew (2016) with the HWRF Model
    typeJournal Paper
    journal volume147
    journal issue1
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-17-0200.1
    journal fristpage175
    journal lastpage198
    treeMonthly Weather Review:;2018:;volume 147:;issue 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian