YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Upper- and Lower-Level Baroclinicity on the Persistence of the Leading Mode of Midlatitude Jet Variability

    Source: Journal of the Atmospheric Sciences:;2018:;volume 076:;issue 001::page 155
    Author:
    Robert, Loïc
    ,
    Rivière, Gwendal
    ,
    Codron, Francis
    DOI: 10.1175/JAS-D-18-0010.1
    Publisher: American Meteorological Society
    Abstract: The sensitivity of the variability of an eddy-driven jet to the upper- and lower-level baroclinicity of the mean state is analyzed using a three-level quasigeostrophic model on the sphere. The model is forced by a relaxation in temperature to a steady, zonally symmetric profile with varying latitude and intensity of the maximum baroclinicity. The leading EOF of the zonally and vertically averaged zonal wind is characterized by a meridional shift of the eddy-driven jet. While changes in the upper-level baroclinicity have no significant impact on the persistence of this leading EOF, an increase in lower-level baroclinicity leads to a reduced persistence. For small lower-level baroclinicity, the leading EOF follows a classical zonal index regime, for which the meridional excursions of the zonal wind anomalies are maintained by a strong positive eddy feedback. For strong lower-level baroclinicity, the jet enters a poleward-propagation regime, for which the eddy forcing continuously acts to push the jet poleward and prevents its maintenance at a fixed latitude. The enhanced poleward propagation when the lower-level baroclinicity increases is interpreted as resulting from the broader and weaker potential vorticity gradient that enables the waves to propagate equatorward and facilitates the poleward migration of the critical latitude. Finally, the decrease in the persistence of the leading EOF as the lower-level baroclinicity increases is shown not to result from the impact of changes in the mean climatological jet latitude.
    • Download: (1.971Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Upper- and Lower-Level Baroclinicity on the Persistence of the Leading Mode of Midlatitude Jet Variability

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4262601
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorRobert, Loïc
    contributor authorRivière, Gwendal
    contributor authorCodron, Francis
    date accessioned2019-09-22T09:03:31Z
    date available2019-09-22T09:03:31Z
    date copyright10/1/2018 12:00:00 AM
    date issued2018
    identifier otherJAS-D-18-0010.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4262601
    description abstractThe sensitivity of the variability of an eddy-driven jet to the upper- and lower-level baroclinicity of the mean state is analyzed using a three-level quasigeostrophic model on the sphere. The model is forced by a relaxation in temperature to a steady, zonally symmetric profile with varying latitude and intensity of the maximum baroclinicity. The leading EOF of the zonally and vertically averaged zonal wind is characterized by a meridional shift of the eddy-driven jet. While changes in the upper-level baroclinicity have no significant impact on the persistence of this leading EOF, an increase in lower-level baroclinicity leads to a reduced persistence. For small lower-level baroclinicity, the leading EOF follows a classical zonal index regime, for which the meridional excursions of the zonal wind anomalies are maintained by a strong positive eddy feedback. For strong lower-level baroclinicity, the jet enters a poleward-propagation regime, for which the eddy forcing continuously acts to push the jet poleward and prevents its maintenance at a fixed latitude. The enhanced poleward propagation when the lower-level baroclinicity increases is interpreted as resulting from the broader and weaker potential vorticity gradient that enables the waves to propagate equatorward and facilitates the poleward migration of the critical latitude. Finally, the decrease in the persistence of the leading EOF as the lower-level baroclinicity increases is shown not to result from the impact of changes in the mean climatological jet latitude.
    publisherAmerican Meteorological Society
    titleEffect of Upper- and Lower-Level Baroclinicity on the Persistence of the Leading Mode of Midlatitude Jet Variability
    typeJournal Paper
    journal volume76
    journal issue1
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-18-0010.1
    journal fristpage155
    journal lastpage169
    treeJournal of the Atmospheric Sciences:;2018:;volume 076:;issue 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian