YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Relative Importance of Wind Straining and Gravitational Forcing in Driving Exchange Flows in Tidally Energetic Estuaries

    Source: Journal of Physical Oceanography:;2019:;volume 049:;issue 003::page 723
    Author:
    Lange, Xaver
    ,
    Burchard, Hans
    DOI: 10.1175/JPO-D-18-0014.1
    Publisher: American Meteorological Society
    Abstract: In straight tidal estuaries, residual overturning circulation results mainly from a competition between gravitational forcing, wind forcing, and friction. To systematically investigate this for tidally energetic estuaries, the dynamics of estuarine cross sections is analyzed in terms of the relation between gravitational forcing, wind stress, and the strength of estuarine circulation. A system-dependent basic Wedderburn number is defined as the ratio between wind forcing and opposing gravitational forcing at which the estuarine circulation changes sign. An analytical steady-state solution for gravitationally and wind-driven exchange flow is constructed, where tidal mixing is parameterized by parabolic eddy viscosity. For this simple but fundamental situation, is calculated, meaning that the up-estuary wind forcing needs to be 15% of the gravitational forcing to invert estuarine circulation. In three steps, relevant physical processes are added to this basic state: (i) tidal dynamics are resolved by a prescribed semidiurnal tide, leading to caused by tidal straining; (ii) lateral circulation is added by introducing cross-channel bathymetry, smoothly increasing from 0.47 (flat bed) to 1.3 (parabolic bed) due to an increasing effect of lateral circulation on estuarine circulation; and (iii) full dynamics of a real tidally energetic inlet with highly variable forcing, where results from a two-dimensional linear regression.
    • Download: (1.760Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Relative Importance of Wind Straining and Gravitational Forcing in Driving Exchange Flows in Tidally Energetic Estuaries

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4262531
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorLange, Xaver
    contributor authorBurchard, Hans
    date accessioned2019-09-22T09:03:09Z
    date available2019-09-22T09:03:09Z
    date copyright1/9/2019 12:00:00 AM
    date issued2019
    identifier otherJPO-D-18-0014.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4262531
    description abstractIn straight tidal estuaries, residual overturning circulation results mainly from a competition between gravitational forcing, wind forcing, and friction. To systematically investigate this for tidally energetic estuaries, the dynamics of estuarine cross sections is analyzed in terms of the relation between gravitational forcing, wind stress, and the strength of estuarine circulation. A system-dependent basic Wedderburn number is defined as the ratio between wind forcing and opposing gravitational forcing at which the estuarine circulation changes sign. An analytical steady-state solution for gravitationally and wind-driven exchange flow is constructed, where tidal mixing is parameterized by parabolic eddy viscosity. For this simple but fundamental situation, is calculated, meaning that the up-estuary wind forcing needs to be 15% of the gravitational forcing to invert estuarine circulation. In three steps, relevant physical processes are added to this basic state: (i) tidal dynamics are resolved by a prescribed semidiurnal tide, leading to caused by tidal straining; (ii) lateral circulation is added by introducing cross-channel bathymetry, smoothly increasing from 0.47 (flat bed) to 1.3 (parabolic bed) due to an increasing effect of lateral circulation on estuarine circulation; and (iii) full dynamics of a real tidally energetic inlet with highly variable forcing, where results from a two-dimensional linear regression.
    publisherAmerican Meteorological Society
    titleThe Relative Importance of Wind Straining and Gravitational Forcing in Driving Exchange Flows in Tidally Energetic Estuaries
    typeJournal Paper
    journal volume49
    journal issue3
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO-D-18-0014.1
    journal fristpage723
    journal lastpage736
    treeJournal of Physical Oceanography:;2019:;volume 049:;issue 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian