YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Baroclinic Tidal Sea Level from Exact-Repeat Mission Altimetry

    Source: Journal of Physical Oceanography:;2018:;volume 049:;issue 001::page 193
    Author:
    Zaron, Edward D.
    DOI: 10.1175/JPO-D-18-0127.1
    Publisher: American Meteorological Society
    Abstract: A near-global model for the sea surface expression of the baroclinic tide has been developed using exact-repeat mission altimetry. The methodology used differs in detail from other altimetry-based estimates of the open ocean baroclinic tide, but it leads to estimates that are broadly similar to previous results. It may be used for prediction of the baroclinic sea level anomaly at the frequencies of the main diurnal and semidiurnal tides , , , and , as well as the annual modulates of , denoted and . The tidal predictions are validated by computing variance reduction statistics using independent sea surface height data from the CryoSat-2 altimeter mission. Typical midocean baroclinic tidal signals range from a few millimeters to centimeters of elevation, corresponding to subsurface isopycnal displacements of tens of meters; however, in a few regions, larger signals are present, and it is found that the present model can explain more than 13-cm2 variance at some sites. The predicted tides are also validated by comparison with a database of hourly currents inferred from drogued surface drifters. The database is large enough to permit assessment of a simple model for scattering of the low-mode tide. Results indicate a scattering time scale of approximately 1 day, consistent with a priori estimates of time-variable refraction by the mesoscale circulation.
    • Download: (10.12Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Baroclinic Tidal Sea Level from Exact-Repeat Mission Altimetry

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4262522
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorZaron, Edward D.
    date accessioned2019-09-22T09:03:04Z
    date available2019-09-22T09:03:04Z
    date copyright11/14/2018 12:00:00 AM
    date issued2018
    identifier otherJPO-D-18-0127.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4262522
    description abstractA near-global model for the sea surface expression of the baroclinic tide has been developed using exact-repeat mission altimetry. The methodology used differs in detail from other altimetry-based estimates of the open ocean baroclinic tide, but it leads to estimates that are broadly similar to previous results. It may be used for prediction of the baroclinic sea level anomaly at the frequencies of the main diurnal and semidiurnal tides , , , and , as well as the annual modulates of , denoted and . The tidal predictions are validated by computing variance reduction statistics using independent sea surface height data from the CryoSat-2 altimeter mission. Typical midocean baroclinic tidal signals range from a few millimeters to centimeters of elevation, corresponding to subsurface isopycnal displacements of tens of meters; however, in a few regions, larger signals are present, and it is found that the present model can explain more than 13-cm2 variance at some sites. The predicted tides are also validated by comparison with a database of hourly currents inferred from drogued surface drifters. The database is large enough to permit assessment of a simple model for scattering of the low-mode tide. Results indicate a scattering time scale of approximately 1 day, consistent with a priori estimates of time-variable refraction by the mesoscale circulation.
    publisherAmerican Meteorological Society
    titleBaroclinic Tidal Sea Level from Exact-Repeat Mission Altimetry
    typeJournal Paper
    journal volume49
    journal issue1
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO-D-18-0127.1
    journal fristpage193
    journal lastpage210
    treeJournal of Physical Oceanography:;2018:;volume 049:;issue 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian