YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Symmetric and Baroclinic Instability in Dense Shelf Overflows

    Source: Journal of Physical Oceanography:;2018:;volume 049:;issue 001::page 39
    Author:
    Yankovsky, Elizabeth
    ,
    Legg, Sonya
    DOI: 10.1175/JPO-D-18-0072.1
    Publisher: American Meteorological Society
    Abstract: In this study, we revisit the problem of rotating dense overflow dynamics by performing nonhydrostatic numerical simulations, resolving submesoscale variability. Thermohaline stratification and buoyancy forcing are based on data from the Eurasian basin of the Arctic Ocean, where overflows are particularly crucial to the exchange of dense water between shelves and deep basins, yet have been studied relatively little. A nonlinear equation of state is used, allowing proper representation of thermohaline structure and mixing. We examine three increasingly complex scenarios: nonrotating 2D, rotating 2D, and rotating 3D. The nonrotating 2D case behaves according to known theory: the gravity current descends alongslope until reaching a relatively shallow neutral buoyancy level. However, in the rotating cases, we have identified novel dynamics: in both 2D and 3D, the submesoscale range is dominated by symmetric instability (SI). Rotation leads to geostrophic adjustment, causing dense water to be confined within the forcing region longer and attain a greater density anomaly. In the 2D case, Ekman drainage leads to descent of the geostrophic jet, forming a highly dense alongslope front. Beams of negative Ertel potential vorticity develop parallel to the slope, initiating SI and vigorous mixing in the overflow. In 3D, baroclinic eddies are responsible for cross-isobath dense water transport, but SI again develops along the slope and at eddy edges. Remarkably, through two different dynamics, the 2D SI-dominated case and 3D eddy-dominated case attain roughly the same final water mass distribution, highlighting the potential role of SI in driving mixing within certain regimes of dense overflows.
    • Download: (4.912Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Symmetric and Baroclinic Instability in Dense Shelf Overflows

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4262518
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorYankovsky, Elizabeth
    contributor authorLegg, Sonya
    date accessioned2019-09-22T09:03:03Z
    date available2019-09-22T09:03:03Z
    date copyright11/1/2018 12:00:00 AM
    date issued2018
    identifier otherJPO-D-18-0072.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4262518
    description abstractIn this study, we revisit the problem of rotating dense overflow dynamics by performing nonhydrostatic numerical simulations, resolving submesoscale variability. Thermohaline stratification and buoyancy forcing are based on data from the Eurasian basin of the Arctic Ocean, where overflows are particularly crucial to the exchange of dense water between shelves and deep basins, yet have been studied relatively little. A nonlinear equation of state is used, allowing proper representation of thermohaline structure and mixing. We examine three increasingly complex scenarios: nonrotating 2D, rotating 2D, and rotating 3D. The nonrotating 2D case behaves according to known theory: the gravity current descends alongslope until reaching a relatively shallow neutral buoyancy level. However, in the rotating cases, we have identified novel dynamics: in both 2D and 3D, the submesoscale range is dominated by symmetric instability (SI). Rotation leads to geostrophic adjustment, causing dense water to be confined within the forcing region longer and attain a greater density anomaly. In the 2D case, Ekman drainage leads to descent of the geostrophic jet, forming a highly dense alongslope front. Beams of negative Ertel potential vorticity develop parallel to the slope, initiating SI and vigorous mixing in the overflow. In 3D, baroclinic eddies are responsible for cross-isobath dense water transport, but SI again develops along the slope and at eddy edges. Remarkably, through two different dynamics, the 2D SI-dominated case and 3D eddy-dominated case attain roughly the same final water mass distribution, highlighting the potential role of SI in driving mixing within certain regimes of dense overflows.
    publisherAmerican Meteorological Society
    titleSymmetric and Baroclinic Instability in Dense Shelf Overflows
    typeJournal Paper
    journal volume49
    journal issue1
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO-D-18-0072.1
    journal fristpage39
    journal lastpage61
    treeJournal of Physical Oceanography:;2018:;volume 049:;issue 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian