YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Dynamic Flight Model for Slocum Gliders and Implications for Turbulence Microstructure Measurements

    Source: Journal of Atmospheric and Oceanic Technology:;2019:;volume 036:;issue 002::page 281
    Author:
    Merckelbach, Lucas
    ,
    Berger, Anja
    ,
    Krahmann, Gerd
    ,
    Dengler, Marcus
    ,
    Carpenter, Jeffrey R.
    DOI: 10.1175/JTECH-D-18-0168.1
    Publisher: American Meteorological Society
    Abstract: The turbulent dissipation rate ε is a key parameter to many oceanographic processes. Recently, gliders have been increasingly used as a carrier for microstructure sensors. Compared to conventional ship-based methods, glider-based microstructure observations allow for long-duration measurements under adverse weather conditions and at lower costs. The incident water velocity U is an input parameter for the calculation of the dissipation rate. Since U cannot be measured using the standard glider sensor setup, the parameter is normally computed from a steady-state glider flight model. As ε scales with U2 or U4, depending on whether it is computed from temperature or shear microstructure, respectively, flight model errors can introduce a significant bias. This study is the first to use measurements of in situ glider flight, obtained with a profiling Doppler velocity log and an electromagnetic current meter, to test and calibrate a flight model, extended to include inertial terms. Compared to a previously suggested flight model, the calibrated model removes a bias of approximately 1 cm s?1 in the incident water velocity, which translates to roughly a factor of 1.2 in estimates of the dissipation rate. The results further indicate that 90% of the estimates of the dissipation rate from the calibrated model are within a factor of 1.1 and 1.2 for measurements derived from microstructure temperature sensors and shear probes, respectively. We further outline the range of applicability of the flight model.
    • Download: (2.085Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Dynamic Flight Model for Slocum Gliders and Implications for Turbulence Microstructure Measurements

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4262500
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorMerckelbach, Lucas
    contributor authorBerger, Anja
    contributor authorKrahmann, Gerd
    contributor authorDengler, Marcus
    contributor authorCarpenter, Jeffrey R.
    date accessioned2019-09-22T09:02:57Z
    date available2019-09-22T09:02:57Z
    date copyright1/9/2019 12:00:00 AM
    date issued2019
    identifier otherJTECH-D-18-0168.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4262500
    description abstractThe turbulent dissipation rate ε is a key parameter to many oceanographic processes. Recently, gliders have been increasingly used as a carrier for microstructure sensors. Compared to conventional ship-based methods, glider-based microstructure observations allow for long-duration measurements under adverse weather conditions and at lower costs. The incident water velocity U is an input parameter for the calculation of the dissipation rate. Since U cannot be measured using the standard glider sensor setup, the parameter is normally computed from a steady-state glider flight model. As ε scales with U2 or U4, depending on whether it is computed from temperature or shear microstructure, respectively, flight model errors can introduce a significant bias. This study is the first to use measurements of in situ glider flight, obtained with a profiling Doppler velocity log and an electromagnetic current meter, to test and calibrate a flight model, extended to include inertial terms. Compared to a previously suggested flight model, the calibrated model removes a bias of approximately 1 cm s?1 in the incident water velocity, which translates to roughly a factor of 1.2 in estimates of the dissipation rate. The results further indicate that 90% of the estimates of the dissipation rate from the calibrated model are within a factor of 1.1 and 1.2 for measurements derived from microstructure temperature sensors and shear probes, respectively. We further outline the range of applicability of the flight model.
    publisherAmerican Meteorological Society
    titleA Dynamic Flight Model for Slocum Gliders and Implications for Turbulence Microstructure Measurements
    typeJournal Paper
    journal volume36
    journal issue2
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH-D-18-0168.1
    journal fristpage281
    journal lastpage296
    treeJournal of Atmospheric and Oceanic Technology:;2019:;volume 036:;issue 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian