YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Intercomparison of Mixing Layer Heights from the National Weather Service Ceilometer Test Sites and Collocated Radiosondes

    Source: Journal of Atmospheric and Oceanic Technology:;2018:;volume 036:;issue 001::page 129
    Author:
    Hicks, Micheal
    ,
    Demoz, Belay
    ,
    Vermeesch, Kevin
    ,
    Atkinson, Dennis
    DOI: 10.1175/JTECH-D-18-0058.1
    Publisher: American Meteorological Society
    Abstract: A network of automated weather stations (AWS) with ceilometers can be used to detect sky conditions, aerosol dispersion, and mixing layer heights, in addition to the routine surface meteorological parameters (temperature, pressure, humidity, etc.). Currently, a dense network of AWSs that observe all of these parameters does not exist in the United States even though networks of them with ceilometers exist. These networks normally use ceilometers for determining only sky conditions. Updating AWS networks to obtain those nonstandard observations with ceilometers, especially mixing layer height, across the United States would provide valuable information for validating and improving weather/climate forecast models. In this respect, an aerosol-based mixing layer height detection method, called the combined-hybrid method, is developed and evaluated for its uncertainty characteristics for application in the United States. Four years of ceilometer data from the National Weather Service Ceilometer Proof of Concept Project taken in temperate, maritime polar, and hot/arid climate regimes are utilized in this evaluation. Overall, the method proved to be a strong candidate for estimating mixing layer heights with ceilometer data, with averaged uncertainties of 237 ± 398 m in all tested climate regimes and 69 ± 250 m when excluding the hot/arid climate regime.
    • Download: (566.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Intercomparison of Mixing Layer Heights from the National Weather Service Ceilometer Test Sites and Collocated Radiosondes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4262487
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorHicks, Micheal
    contributor authorDemoz, Belay
    contributor authorVermeesch, Kevin
    contributor authorAtkinson, Dennis
    date accessioned2019-09-22T09:02:53Z
    date available2019-09-22T09:02:53Z
    date copyright12/6/2018 12:00:00 AM
    date issued2018
    identifier otherJTECH-D-18-0058.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4262487
    description abstractA network of automated weather stations (AWS) with ceilometers can be used to detect sky conditions, aerosol dispersion, and mixing layer heights, in addition to the routine surface meteorological parameters (temperature, pressure, humidity, etc.). Currently, a dense network of AWSs that observe all of these parameters does not exist in the United States even though networks of them with ceilometers exist. These networks normally use ceilometers for determining only sky conditions. Updating AWS networks to obtain those nonstandard observations with ceilometers, especially mixing layer height, across the United States would provide valuable information for validating and improving weather/climate forecast models. In this respect, an aerosol-based mixing layer height detection method, called the combined-hybrid method, is developed and evaluated for its uncertainty characteristics for application in the United States. Four years of ceilometer data from the National Weather Service Ceilometer Proof of Concept Project taken in temperate, maritime polar, and hot/arid climate regimes are utilized in this evaluation. Overall, the method proved to be a strong candidate for estimating mixing layer heights with ceilometer data, with averaged uncertainties of 237 ± 398 m in all tested climate regimes and 69 ± 250 m when excluding the hot/arid climate regime.
    publisherAmerican Meteorological Society
    titleIntercomparison of Mixing Layer Heights from the National Weather Service Ceilometer Test Sites and Collocated Radiosondes
    typeJournal Paper
    journal volume36
    journal issue1
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH-D-18-0058.1
    journal fristpage129
    journal lastpage137
    treeJournal of Atmospheric and Oceanic Technology:;2018:;volume 036:;issue 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian