YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Precipitation Intensity Changes in the Tropics from Observations and Models

    Source: Journal of Climate:;2018:;volume 031:;issue 012::page 4775
    Author:
    Gu, Guojun
    ,
    Adler, Robert F.
    DOI: 10.1175/JCLI-D-17-0550.1
    Publisher: American Meteorological Society
    Abstract: AbstractTropical (30°N?30°S) interdecadal precipitation changes and trends are explored for the satellite era using GPCP monthly analyses and CMIP5 outputs and focusing on precipitation intensity distributions represented by percentiles (Pct) and other parameters. Positive trends occur for the upper percentiles (Pct ≥ 70th), and become statistically significant for Pct ≥ 80th. Negative trends appear for the middle one-half percentiles (~20th?65th) and are statistically significant for the 20th?40th percentiles. As part of these trends there is a decadal shift around 1998, indicating the presence of an interdecadal [Pacific decadal oscillation (PDO)] signal. For the lower percentiles (Pct ≤ 10th), positive trends occur, although weakly. The AMIP-type simulations generally show similar trend results for their respective time periods.Precipitation intensity changes are further examined using four precipitation categories based on the climatological percentiles: Wet (Pct ≥ 70th), Intermediate (70th > Pct ≥ 30th), Dry (30th > Pct ≥ 5th), and No Rain (5th > Pct ≥ 0th). Epoch differences of occurrence frequency between 1988?97 and 1998?2015 have spatial features generally reflecting the combined effect of the PDO and external forcings, specifically the anthropogenic greenhouse gas (GHG)-related warming based on comparisons with both AMIP and CMIP results. Furthermore, precipitation intensity over Wet zones shows much stronger changes than mean precipitation including a more prominent change around 1998 associated with the PDO phase shift. Trends also appear in the sizes of Intermediate and Dry zones, especially over ocean. However, changes in the sizes of Wet and No Rain zones are generally weak. AMIP simulations reproduce these changes relatively well. Comparisons with the CMIP5 historical experiments further confirm that the observed changes and trends are a combination of the effect of the PDO phase shift and the impact of anthropogenic GHG-related warming.
    • Download: (3.105Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Precipitation Intensity Changes in the Tropics from Observations and Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4262224
    Collections
    • Journal of Climate

    Show full item record

    contributor authorGu, Guojun
    contributor authorAdler, Robert F.
    date accessioned2019-09-19T10:09:42Z
    date available2019-09-19T10:09:42Z
    date copyright3/28/2018 12:00:00 AM
    date issued2018
    identifier otherjcli-d-17-0550.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4262224
    description abstractAbstractTropical (30°N?30°S) interdecadal precipitation changes and trends are explored for the satellite era using GPCP monthly analyses and CMIP5 outputs and focusing on precipitation intensity distributions represented by percentiles (Pct) and other parameters. Positive trends occur for the upper percentiles (Pct ≥ 70th), and become statistically significant for Pct ≥ 80th. Negative trends appear for the middle one-half percentiles (~20th?65th) and are statistically significant for the 20th?40th percentiles. As part of these trends there is a decadal shift around 1998, indicating the presence of an interdecadal [Pacific decadal oscillation (PDO)] signal. For the lower percentiles (Pct ≤ 10th), positive trends occur, although weakly. The AMIP-type simulations generally show similar trend results for their respective time periods.Precipitation intensity changes are further examined using four precipitation categories based on the climatological percentiles: Wet (Pct ≥ 70th), Intermediate (70th > Pct ≥ 30th), Dry (30th > Pct ≥ 5th), and No Rain (5th > Pct ≥ 0th). Epoch differences of occurrence frequency between 1988?97 and 1998?2015 have spatial features generally reflecting the combined effect of the PDO and external forcings, specifically the anthropogenic greenhouse gas (GHG)-related warming based on comparisons with both AMIP and CMIP results. Furthermore, precipitation intensity over Wet zones shows much stronger changes than mean precipitation including a more prominent change around 1998 associated with the PDO phase shift. Trends also appear in the sizes of Intermediate and Dry zones, especially over ocean. However, changes in the sizes of Wet and No Rain zones are generally weak. AMIP simulations reproduce these changes relatively well. Comparisons with the CMIP5 historical experiments further confirm that the observed changes and trends are a combination of the effect of the PDO phase shift and the impact of anthropogenic GHG-related warming.
    publisherAmerican Meteorological Society
    titlePrecipitation Intensity Changes in the Tropics from Observations and Models
    typeJournal Paper
    journal volume31
    journal issue12
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-17-0550.1
    journal fristpage4775
    journal lastpage4790
    treeJournal of Climate:;2018:;volume 031:;issue 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian