YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Heat Stress Changes over East Asia under 1.5° and 2.0°C Global Warming Targets

    Source: Journal of Climate:;2018:;volume 031:;issue 007::page 2819
    Author:
    Lee, Sang-Min
    ,
    Min, Seung-Ki
    DOI: 10.1175/JCLI-D-17-0449.1
    Publisher: American Meteorological Society
    Abstract: AbstractThis study provides a first quantification of possible benefits of global warming mitigation through heat stress reduction over East Asia by comparing projection results between low-emission and high-emission scenarios, as well as between 1.5° and 2.0°C target temperature conditions. Future changes in summer heat stress over East Asia were examined based on the wet-bulb globe temperature (WBGT) using CMIP5 multimodel simulations. Changes in the intensity, frequency, and duration of heat stress were analyzed in terms of area fraction across RCP2.6, RCP4.5, and RCP8.5 scenarios and also between two selected model groups representing 1.5°- and 2.0°C-warmer worlds. Severe heat stress, exceeding the 50-yr return value of the present-day period, is expected to become very frequent, occurring every second year over the large part of East Asia by the 2040s, irrespective of RCP scenarios. The frequency of extreme daily heat stress events is predicted to increase in a similar speed of expansion, with signals emerging from the low latitudes. The WBGT signal emergence is found to be much faster than that of corresponding temperature alone due to the smaller variability in WBGT, supporting previous findings. The 1.5°C-warmer world would have about 20% reduction in areas experiencing severe heat stress over East Asia, compared to the 2.0°C-warmer world, with significant changes identified over the low latitudes. Further, compared to the transient world, the equilibrium world exhibits larger increases in heat stress over East Asia, likely due to the warmer ocean surface in the northwestern North Pacific. This suggests an important role of ocean warming patterns in the regional assessment of global warming mitigation.
    • Download: (2.321Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Heat Stress Changes over East Asia under 1.5° and 2.0°C Global Warming Targets

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4262176
    Collections
    • Journal of Climate

    Show full item record

    contributor authorLee, Sang-Min
    contributor authorMin, Seung-Ki
    date accessioned2019-09-19T10:09:27Z
    date available2019-09-19T10:09:27Z
    date copyright1/11/2018 12:00:00 AM
    date issued2018
    identifier otherjcli-d-17-0449.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4262176
    description abstractAbstractThis study provides a first quantification of possible benefits of global warming mitigation through heat stress reduction over East Asia by comparing projection results between low-emission and high-emission scenarios, as well as between 1.5° and 2.0°C target temperature conditions. Future changes in summer heat stress over East Asia were examined based on the wet-bulb globe temperature (WBGT) using CMIP5 multimodel simulations. Changes in the intensity, frequency, and duration of heat stress were analyzed in terms of area fraction across RCP2.6, RCP4.5, and RCP8.5 scenarios and also between two selected model groups representing 1.5°- and 2.0°C-warmer worlds. Severe heat stress, exceeding the 50-yr return value of the present-day period, is expected to become very frequent, occurring every second year over the large part of East Asia by the 2040s, irrespective of RCP scenarios. The frequency of extreme daily heat stress events is predicted to increase in a similar speed of expansion, with signals emerging from the low latitudes. The WBGT signal emergence is found to be much faster than that of corresponding temperature alone due to the smaller variability in WBGT, supporting previous findings. The 1.5°C-warmer world would have about 20% reduction in areas experiencing severe heat stress over East Asia, compared to the 2.0°C-warmer world, with significant changes identified over the low latitudes. Further, compared to the transient world, the equilibrium world exhibits larger increases in heat stress over East Asia, likely due to the warmer ocean surface in the northwestern North Pacific. This suggests an important role of ocean warming patterns in the regional assessment of global warming mitigation.
    publisherAmerican Meteorological Society
    titleHeat Stress Changes over East Asia under 1.5° and 2.0°C Global Warming Targets
    typeJournal Paper
    journal volume31
    journal issue7
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-17-0449.1
    journal fristpage2819
    journal lastpage2831
    treeJournal of Climate:;2018:;volume 031:;issue 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian