YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Impacts of the Boreal Spring Indo-Pacific Warm Pool Hadley Circulation on Tropical Cyclone Activity over the Western North Pacific

    Source: Journal of Climate:;2017:;volume 031:;issue 004::page 1361
    Author:
    Guo, Yi-Peng
    ,
    Tan, Zhe-Min
    DOI: 10.1175/JCLI-D-17-0422.1
    Publisher: American Meteorological Society
    Abstract: AbstractThis study investigated the impacts of the interannual variability in the boreal spring regional Hadley circulation over the Indo-Pacific warm pool (IPWP) on the tropical cyclone (TC) activity over the western North Pacific (WNP). The principal modes of the interannual variability in the IPWP Hadley circulation were calculated using empirical orthogonal function (EOF) analysis. The leading mode (EOF-1) features cross-equatorial southerly wind anomalies over the Indian Ocean and Maritime Continent and has an evident impact on WNP TC activity during summer. In the summer following a positive phase of the EOF-1, a cyclonic circulation anomaly, with upward motion, positive relative vorticity anomalies, and weak sea level pressure, dominates the WNP, and this favors increased TC genesis. However, large positive vertical wind shear anomalies over the South China Sea and Philippine Sea inhibit the TC intensification. A positive wind?sea surface temperature (SST)?precipitation feedback was found to facilitate the ability of the signal of the EOF-1 to persist until the summer. The westerly wind anomalies converge around 10°N over the WNP, thus increasing precipitation, and this increased precipitation enhances the westerly wind anomalies via a Gill-type response. The strengthened westerly wind anomalies increase total wind speeds, which in turn cool the SST in the Bay of Bengal and the South China Sea, and warm the SST in the eastern WNP, increasing the zonal SST gradient. Consequently, this increased zonal SST gradient further enhances the westerly wind anomalies, strengthens the monsoon trough, and increases the WNP precipitation further. Therefore, the WNP precipitation anomalies are sustained into the summer.
    • Download: (2.646Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Impacts of the Boreal Spring Indo-Pacific Warm Pool Hadley Circulation on Tropical Cyclone Activity over the Western North Pacific

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4262157
    Collections
    • Journal of Climate

    Show full item record

    contributor authorGuo, Yi-Peng
    contributor authorTan, Zhe-Min
    date accessioned2019-09-19T10:09:19Z
    date available2019-09-19T10:09:19Z
    date copyright11/14/2017 12:00:00 AM
    date issued2017
    identifier otherjcli-d-17-0422.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4262157
    description abstractAbstractThis study investigated the impacts of the interannual variability in the boreal spring regional Hadley circulation over the Indo-Pacific warm pool (IPWP) on the tropical cyclone (TC) activity over the western North Pacific (WNP). The principal modes of the interannual variability in the IPWP Hadley circulation were calculated using empirical orthogonal function (EOF) analysis. The leading mode (EOF-1) features cross-equatorial southerly wind anomalies over the Indian Ocean and Maritime Continent and has an evident impact on WNP TC activity during summer. In the summer following a positive phase of the EOF-1, a cyclonic circulation anomaly, with upward motion, positive relative vorticity anomalies, and weak sea level pressure, dominates the WNP, and this favors increased TC genesis. However, large positive vertical wind shear anomalies over the South China Sea and Philippine Sea inhibit the TC intensification. A positive wind?sea surface temperature (SST)?precipitation feedback was found to facilitate the ability of the signal of the EOF-1 to persist until the summer. The westerly wind anomalies converge around 10°N over the WNP, thus increasing precipitation, and this increased precipitation enhances the westerly wind anomalies via a Gill-type response. The strengthened westerly wind anomalies increase total wind speeds, which in turn cool the SST in the Bay of Bengal and the South China Sea, and warm the SST in the eastern WNP, increasing the zonal SST gradient. Consequently, this increased zonal SST gradient further enhances the westerly wind anomalies, strengthens the monsoon trough, and increases the WNP precipitation further. Therefore, the WNP precipitation anomalies are sustained into the summer.
    publisherAmerican Meteorological Society
    titleImpacts of the Boreal Spring Indo-Pacific Warm Pool Hadley Circulation on Tropical Cyclone Activity over the Western North Pacific
    typeJournal Paper
    journal volume31
    journal issue4
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-17-0422.1
    journal fristpage1361
    journal lastpage1375
    treeJournal of Climate:;2017:;volume 031:;issue 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian