contributor author | Gao, Miaoni | |
contributor author | Wang, Bin | |
contributor author | Yang, Jing | |
contributor author | Dong, Wenjie | |
date accessioned | 2019-09-19T10:09:03Z | |
date available | 2019-09-19T10:09:03Z | |
date copyright | 12/15/2017 12:00:00 AM | |
date issued | 2017 | |
identifier other | jcli-d-17-0342.1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4262102 | |
description abstract | AbstractThe Yangtze?Huaihe River basin (YHRB) is the core region of sultry heat wave occurrence over China during peak summer [July and August (JA)]. The extremely hot and muggy weather is locally controlled by a descending high pressure anomaly connected to the western Pacific subtropical high. During 1961?2015, the heat wave days (HWDs) in JA over the YHRB exhibit large year-to-year and decadal variations. Prediction of the total number of HWDs in JA is of great societal and scientific importance. The summer HWDs are preceded by a zonal dipole SST tendency pattern in the tropical Pacific and a meridional tripole SST anomaly pattern over the North Atlantic. The former signifies a rapid transition from a decaying central Pacific El Niño in early spring to a developing eastern Pacific La Niña in summer, which enhances the western Pacific subtropical high and increases pressure over the YHRB by altering the Walker circulation. The North Atlantic tripole SST anomalies persist from the preceding winter to JA and excite a circumglobal teleconnection pattern placing a high pressure anomaly over the YHRB. To predict the JA HWDs, a 1-month lead prediction model is established with the above two predictors. The forward-rolling hindcast achieves a significant correlation skill of 0.66 for 1981?2015, and the independent forecast skill made for 1996?2015 reaches 0.73. These results indicate the source of predictability of summer HWDs and provide an estimate for the potential predictability, suggesting about 55% of the total variance may be potentially predictable. This study also reveals greater possibilities for dynamical models to improve their prediction skills. | |
publisher | American Meteorological Society | |
title | Are Peak Summer Sultry Heat Wave Days over the Yangtze–Huaihe River Basin Predictable? | |
type | Journal Paper | |
journal volume | 31 | |
journal issue | 6 | |
journal title | Journal of Climate | |
identifier doi | 10.1175/JCLI-D-17-0342.1 | |
journal fristpage | 2185 | |
journal lastpage | 2196 | |
tree | Journal of Climate:;2017:;volume 031:;issue 006 | |
contenttype | Fulltext | |