YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Projection of North Pacific Tropical Upper-Tropospheric Trough in CMIP5 Models: Implications for Changes in Tropical Cyclone Formation Locations

    Source: Journal of Climate:;2017:;volume 031:;issue 002::page 761
    Author:
    Wang, Chao
    ,
    Wu, Liguang
    DOI: 10.1175/JCLI-D-17-0292.1
    Publisher: American Meteorological Society
    Abstract: AbstractThe strong westerly shear to the south flank of the tropical upper-tropospheric trough (TUTT) limits the eastward extension of tropical cyclone (TC) formation over the western North Pacific (WNP) and thus the zonal shift of the TUTT in warming scenarios has an important implication for the mean formation location of TCs. The impact of global warming on the zonal shift of the TUTT is investigated by using output from phase 5 of the Coupled Model Intercomparison Project (CMIP5) of 36 climate models in this study. It is found that considerable spread exists in the zonal position, orientation, and intensity of the simulated-climatologic TUTT in the historical runs, which is forced by observed conditions such as changes in atmospheric composition, solar forcing, and aerosols. The large spread is closely related to the diversity in the simulated SST biases over the North Pacific. Based on the 15 models with relatively high skill in their historical runs, the near-term (2016?35) projection shows no significant change of the TUTT longitude, while the TUTT experiences an eastward shift of 1.9° and 3.2° longitude in the representative concentration pathway (RCP) 4.5 and 8.5 scenarios in the long-term (2081?2100) projection with considerable intermodel variability. Further examination indicates that the projected changes in the zonal location of the TUTT are also associated with the projected relative SST anomalies over the North Pacific. A stronger (weaker) relative SST warming over the North Pacific favors an eastward (westward) shift of the TUTT, suggesting that the spatial pattern of the future SST change is an important factor for the zonal shift of the mean formation location of TCs.
    • Download: (2.360Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Projection of North Pacific Tropical Upper-Tropospheric Trough in CMIP5 Models: Implications for Changes in Tropical Cyclone Formation Locations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4262073
    Collections
    • Journal of Climate

    Show full item record

    contributor authorWang, Chao
    contributor authorWu, Liguang
    date accessioned2019-09-19T10:08:54Z
    date available2019-09-19T10:08:54Z
    date copyright11/15/2017 12:00:00 AM
    date issued2017
    identifier otherjcli-d-17-0292.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4262073
    description abstractAbstractThe strong westerly shear to the south flank of the tropical upper-tropospheric trough (TUTT) limits the eastward extension of tropical cyclone (TC) formation over the western North Pacific (WNP) and thus the zonal shift of the TUTT in warming scenarios has an important implication for the mean formation location of TCs. The impact of global warming on the zonal shift of the TUTT is investigated by using output from phase 5 of the Coupled Model Intercomparison Project (CMIP5) of 36 climate models in this study. It is found that considerable spread exists in the zonal position, orientation, and intensity of the simulated-climatologic TUTT in the historical runs, which is forced by observed conditions such as changes in atmospheric composition, solar forcing, and aerosols. The large spread is closely related to the diversity in the simulated SST biases over the North Pacific. Based on the 15 models with relatively high skill in their historical runs, the near-term (2016?35) projection shows no significant change of the TUTT longitude, while the TUTT experiences an eastward shift of 1.9° and 3.2° longitude in the representative concentration pathway (RCP) 4.5 and 8.5 scenarios in the long-term (2081?2100) projection with considerable intermodel variability. Further examination indicates that the projected changes in the zonal location of the TUTT are also associated with the projected relative SST anomalies over the North Pacific. A stronger (weaker) relative SST warming over the North Pacific favors an eastward (westward) shift of the TUTT, suggesting that the spatial pattern of the future SST change is an important factor for the zonal shift of the mean formation location of TCs.
    publisherAmerican Meteorological Society
    titleProjection of North Pacific Tropical Upper-Tropospheric Trough in CMIP5 Models: Implications for Changes in Tropical Cyclone Formation Locations
    typeJournal Paper
    journal volume31
    journal issue2
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-17-0292.1
    journal fristpage761
    journal lastpage774
    treeJournal of Climate:;2017:;volume 031:;issue 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian