Process-Oriented Diagnosis of Tropical Cyclones in High-Resolution GCMsSource: Journal of Climate:;2017:;volume 031:;issue 005::page 1685Author:Kim, Daehyun
,
Moon, Yumin
,
Camargo, Suzana J.
,
Wing, Allison A.
,
Sobel, Adam H.
,
Murakami, Hiroyuki
,
Vecchi, Gabriel A.
,
Zhao, Ming
,
Page, Eric
DOI: 10.1175/JCLI-D-17-0269.1Publisher: American Meteorological Society
Abstract: AbstractThis study proposes a set of process-oriented diagnostics with the aim of understanding how model physics and numerics control the representation of tropical cyclones (TCs), especially their intensity distribution, in GCMs. Three simulations are made using two 50-km GCMs developed at NOAA?s Geophysical Fluid Dynamics Laboratory. The two models are forced with the observed sea surface temperature [Atmospheric Model version 2.5 (AM2.5) and High Resolution Atmospheric Model (HiRAM)], and in the third simulation, the AM2.5 model is coupled to an ocean GCM [Forecast-Oriented Low Ocean Resolution (FLOR)]. The frequency distributions of maximum near-surface wind near TC centers show that HiRAM tends to develop stronger TCs than the other models do. Large-scale environmental parameters, such as potential intensity, do not explain the differences between HiRAM and the other models. It is found that HiRAM produces a greater amount of precipitation near the TC center, suggesting that associated greater diabatic heating enables TCs to become stronger in HiRAM. HiRAM also shows a greater contrast in relative humidity and surface latent heat flux between the inner and outer regions of TCs. Various fields are composited on precipitation percentiles to reveal the essential character of the interaction among convection, moisture, and surface heat flux. Results show that the moisture sensitivity of convection is higher in HiRAM than in the other model simulations. HiRAM also exhibits a stronger feedback from surface latent heat flux to convection via near-surface wind speed in heavy rain-rate regimes. The results emphasize that the moisture?convection coupling and the surface heat flux feedback are critical processes that affect the intensity of TCs in GCMs.
|
Collections
Show full item record
contributor author | Kim, Daehyun | |
contributor author | Moon, Yumin | |
contributor author | Camargo, Suzana J. | |
contributor author | Wing, Allison A. | |
contributor author | Sobel, Adam H. | |
contributor author | Murakami, Hiroyuki | |
contributor author | Vecchi, Gabriel A. | |
contributor author | Zhao, Ming | |
contributor author | Page, Eric | |
date accessioned | 2019-09-19T10:08:47Z | |
date available | 2019-09-19T10:08:47Z | |
date copyright | 11/28/2017 12:00:00 AM | |
date issued | 2017 | |
identifier other | jcli-d-17-0269.1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4262056 | |
description abstract | AbstractThis study proposes a set of process-oriented diagnostics with the aim of understanding how model physics and numerics control the representation of tropical cyclones (TCs), especially their intensity distribution, in GCMs. Three simulations are made using two 50-km GCMs developed at NOAA?s Geophysical Fluid Dynamics Laboratory. The two models are forced with the observed sea surface temperature [Atmospheric Model version 2.5 (AM2.5) and High Resolution Atmospheric Model (HiRAM)], and in the third simulation, the AM2.5 model is coupled to an ocean GCM [Forecast-Oriented Low Ocean Resolution (FLOR)]. The frequency distributions of maximum near-surface wind near TC centers show that HiRAM tends to develop stronger TCs than the other models do. Large-scale environmental parameters, such as potential intensity, do not explain the differences between HiRAM and the other models. It is found that HiRAM produces a greater amount of precipitation near the TC center, suggesting that associated greater diabatic heating enables TCs to become stronger in HiRAM. HiRAM also shows a greater contrast in relative humidity and surface latent heat flux between the inner and outer regions of TCs. Various fields are composited on precipitation percentiles to reveal the essential character of the interaction among convection, moisture, and surface heat flux. Results show that the moisture sensitivity of convection is higher in HiRAM than in the other model simulations. HiRAM also exhibits a stronger feedback from surface latent heat flux to convection via near-surface wind speed in heavy rain-rate regimes. The results emphasize that the moisture?convection coupling and the surface heat flux feedback are critical processes that affect the intensity of TCs in GCMs. | |
publisher | American Meteorological Society | |
title | Process-Oriented Diagnosis of Tropical Cyclones in High-Resolution GCMs | |
type | Journal Paper | |
journal volume | 31 | |
journal issue | 5 | |
journal title | Journal of Climate | |
identifier doi | 10.1175/JCLI-D-17-0269.1 | |
journal fristpage | 1685 | |
journal lastpage | 1702 | |
tree | Journal of Climate:;2017:;volume 031:;issue 005 | |
contenttype | Fulltext |