YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Interactions between Hydrological Sensitivity, Radiative Cooling, Stability, and Low-Level Cloud Amount Feedback

    Source: Journal of Climate:;2017:;volume 031:;issue 005::page 1833
    Author:
    Webb, Mark J.
    ,
    Lock, Adrian P.
    ,
    Lambert, F. Hugo
    DOI: 10.1175/JCLI-D-16-0895.1
    Publisher: American Meteorological Society
    Abstract: AbstractLow-level cloud feedbacks vary in magnitude but are positive in most climate models, due to reductions in low-level cloud fraction. This study explores the impact of surface evaporation on low-level cloud fraction feedback by performing climate change experiments with the aquaplanet configuration of the HadGEM2-A climate model, forcing surface evaporation to increase at different rates in two ways. Forcing the evaporation diagnosed in the surface scheme to increase at 7% K?1 with warming (more than doubling the hydrological sensitivity) results in an increase in global mean low-level cloud fraction and a negative global cloud feedback, reversing the signs of these responses compared to the standard experiments. The estimated inversion strength (EIS) increases more rapidly in these surface evaporation forced experiments, which is attributed to additional latent heat release and enhanced warming of the free troposphere. Stimulating a 7% K?1 increase in surface evaporation via enhanced atmospheric radiative cooling, however, results in a weaker EIS increase compared to the standard experiments and a slightly stronger low-level cloud reduction. The low-level cloud fraction response is predicted better by EIS than surface evaporation across all experiments. This suggests that surface-forced increases in evaporation increase low-level cloud fraction mainly by increasing EIS. Additionally, the results herein show that increases in surface evaporation can have a very substantial impact on the rate of increase in radiative cooling with warming, by modifying the temperature and humidity structure of the atmosphere. This has implications for understanding the factors controlling hydrological sensitivity.
    • Download: (1.061Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Interactions between Hydrological Sensitivity, Radiative Cooling, Stability, and Low-Level Cloud Amount Feedback

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4261959
    Collections
    • Journal of Climate

    Show full item record

    contributor authorWebb, Mark J.
    contributor authorLock, Adrian P.
    contributor authorLambert, F. Hugo
    date accessioned2019-09-19T10:08:17Z
    date available2019-09-19T10:08:17Z
    date copyright12/19/2017 12:00:00 AM
    date issued2017
    identifier otherjcli-d-16-0895.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4261959
    description abstractAbstractLow-level cloud feedbacks vary in magnitude but are positive in most climate models, due to reductions in low-level cloud fraction. This study explores the impact of surface evaporation on low-level cloud fraction feedback by performing climate change experiments with the aquaplanet configuration of the HadGEM2-A climate model, forcing surface evaporation to increase at different rates in two ways. Forcing the evaporation diagnosed in the surface scheme to increase at 7% K?1 with warming (more than doubling the hydrological sensitivity) results in an increase in global mean low-level cloud fraction and a negative global cloud feedback, reversing the signs of these responses compared to the standard experiments. The estimated inversion strength (EIS) increases more rapidly in these surface evaporation forced experiments, which is attributed to additional latent heat release and enhanced warming of the free troposphere. Stimulating a 7% K?1 increase in surface evaporation via enhanced atmospheric radiative cooling, however, results in a weaker EIS increase compared to the standard experiments and a slightly stronger low-level cloud reduction. The low-level cloud fraction response is predicted better by EIS than surface evaporation across all experiments. This suggests that surface-forced increases in evaporation increase low-level cloud fraction mainly by increasing EIS. Additionally, the results herein show that increases in surface evaporation can have a very substantial impact on the rate of increase in radiative cooling with warming, by modifying the temperature and humidity structure of the atmosphere. This has implications for understanding the factors controlling hydrological sensitivity.
    publisherAmerican Meteorological Society
    titleInteractions between Hydrological Sensitivity, Radiative Cooling, Stability, and Low-Level Cloud Amount Feedback
    typeJournal Paper
    journal volume31
    journal issue5
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-16-0895.1
    journal fristpage1833
    journal lastpage1850
    treeJournal of Climate:;2017:;volume 031:;issue 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian