YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Isolating the Effects of Moisture Entrainment on Convectively Coupled Equatorial Waves in an Aquaplanet GCM

    Source: Journal of the Atmospheric Sciences:;2018:;volume 075:;issue 009::page 3139
    Author:
    Peatman, Simon C.
    ,
    Methven, John
    ,
    Woolnough, Steven J.
    DOI: 10.1175/JAS-D-18-0098.1
    Publisher: American Meteorological Society
    Abstract: AbstractThe rate of humidity entrainment in the convective parameterization scheme in a general circulation model affects the simulation of convectively coupled waves. However, it is unclear whether this is caused directly by the effects of entrainment on waves or indirectly through associated impacts such as on the basic state. Therefore, using an aquaplanet model, we employ a novel framework in which we entrain a weighted average of the resolved humidity field and a prescribed zonally symmetric field, with the weighting controlled by a decoupling parameter. Hence, we can vary the entrainment rate of basic-state humidity independently of the entrainment of humidity perturbations, simultaneously minimizing changes in the basic state. Thus, we isolate the effect of moisture entrainment on the waves. Enhancing the entrainment rate increases spectral power over all zonal wavenumbers and frequencies, with an increase in the ratio of eastward-to-westward power. The Kelvin wave speed decreases as entrainment increases, which can be partially accounted for by an associated change in basic-state humidity. Increasing the decoupling parameter reduces spectral power in Kelvin waves relative to the background, with only long waves still prominent when entrainment is almost fully decoupled from the resolved moisture field, suggesting the wave structure in humidity is required for convection to organize into short-wave structures. For long waves, the increase in the ratio of eastward-to-westward power as entrainment rate increases cannot be explained by the changes in the coupling with the wave structure in humidity but is consistent with the changes in the basic state.
    • Download: (1.790Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Isolating the Effects of Moisture Entrainment on Convectively Coupled Equatorial Waves in an Aquaplanet GCM

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4261933
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorPeatman, Simon C.
    contributor authorMethven, John
    contributor authorWoolnough, Steven J.
    date accessioned2019-09-19T10:08:09Z
    date available2019-09-19T10:08:09Z
    date copyright7/2/2018 12:00:00 AM
    date issued2018
    identifier otherjas-d-18-0098.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4261933
    description abstractAbstractThe rate of humidity entrainment in the convective parameterization scheme in a general circulation model affects the simulation of convectively coupled waves. However, it is unclear whether this is caused directly by the effects of entrainment on waves or indirectly through associated impacts such as on the basic state. Therefore, using an aquaplanet model, we employ a novel framework in which we entrain a weighted average of the resolved humidity field and a prescribed zonally symmetric field, with the weighting controlled by a decoupling parameter. Hence, we can vary the entrainment rate of basic-state humidity independently of the entrainment of humidity perturbations, simultaneously minimizing changes in the basic state. Thus, we isolate the effect of moisture entrainment on the waves. Enhancing the entrainment rate increases spectral power over all zonal wavenumbers and frequencies, with an increase in the ratio of eastward-to-westward power. The Kelvin wave speed decreases as entrainment increases, which can be partially accounted for by an associated change in basic-state humidity. Increasing the decoupling parameter reduces spectral power in Kelvin waves relative to the background, with only long waves still prominent when entrainment is almost fully decoupled from the resolved moisture field, suggesting the wave structure in humidity is required for convection to organize into short-wave structures. For long waves, the increase in the ratio of eastward-to-westward power as entrainment rate increases cannot be explained by the changes in the coupling with the wave structure in humidity but is consistent with the changes in the basic state.
    publisherAmerican Meteorological Society
    titleIsolating the Effects of Moisture Entrainment on Convectively Coupled Equatorial Waves in an Aquaplanet GCM
    typeJournal Paper
    journal volume75
    journal issue9
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-18-0098.1
    journal fristpage3139
    journal lastpage3157
    treeJournal of the Atmospheric Sciences:;2018:;volume 075:;issue 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian