YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Characteristics of Linear-Phase Roll Vortices under a Moving Hurricane Boundary Layer

    Source: Journal of the Atmospheric Sciences:;2018:;volume 075:;issue 008::page 2589
    Author:
    Gao, Kun
    ,
    Ginis, Isaac
    DOI: 10.1175/JAS-D-17-0363.1
    Publisher: American Meteorological Society
    Abstract: AbstractPrevious theoretical and numerical studies only focused on the formation of roll vortices (rolls) under a stationary and axisymmetric hurricane. The effect of the asymmetric wind structure induced by the storm movement on the roll characteristics remains unknown. In this study, we present the first attempt to investigate the characteristics of linear-phase rolls under a moving hurricane by embedding a linear two-dimensional (2D) roll-resolving model into a 3D hurricane boundary layer model. It is found that the roll horizontal wavelength under the moving hurricane is largely determined by the radial-shear-layer depth, defined as the thickness of the layer with positive radial wind shear. The horizontal distribution of the roll wavelength resembles the asymmetric pattern of the radial-shear-layer depth. Interestingly, the roll growth rate is not only affected by the radial wind shear magnitude alluded to in previous studies but also by the radial-shear-layer depth. A deeper (shallower) radial shear layer tends to decrease (increase) the roll growth rate. Such an effect is due to the presence of the bottom boundary. The bottom boundary constrains the lower-level roll streamlines and reduces the efficiency of rolls in extracting kinetic energy from the radial shear. This effect is more pronounced under a deeper shear layer, which favors the formation of larger-size rolls. This study improves the understanding of the main factors affecting the structure and growth of rolls and will provide guidance for interpreting the spatial distribution of rolls under realistic hurricanes in observations and high-resolution simulations.
    • Download: (1.065Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Characteristics of Linear-Phase Roll Vortices under a Moving Hurricane Boundary Layer

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4261874
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorGao, Kun
    contributor authorGinis, Isaac
    date accessioned2019-09-19T10:07:53Z
    date available2019-09-19T10:07:53Z
    date copyright5/3/2018 12:00:00 AM
    date issued2018
    identifier otherjas-d-17-0363.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4261874
    description abstractAbstractPrevious theoretical and numerical studies only focused on the formation of roll vortices (rolls) under a stationary and axisymmetric hurricane. The effect of the asymmetric wind structure induced by the storm movement on the roll characteristics remains unknown. In this study, we present the first attempt to investigate the characteristics of linear-phase rolls under a moving hurricane by embedding a linear two-dimensional (2D) roll-resolving model into a 3D hurricane boundary layer model. It is found that the roll horizontal wavelength under the moving hurricane is largely determined by the radial-shear-layer depth, defined as the thickness of the layer with positive radial wind shear. The horizontal distribution of the roll wavelength resembles the asymmetric pattern of the radial-shear-layer depth. Interestingly, the roll growth rate is not only affected by the radial wind shear magnitude alluded to in previous studies but also by the radial-shear-layer depth. A deeper (shallower) radial shear layer tends to decrease (increase) the roll growth rate. Such an effect is due to the presence of the bottom boundary. The bottom boundary constrains the lower-level roll streamlines and reduces the efficiency of rolls in extracting kinetic energy from the radial shear. This effect is more pronounced under a deeper shear layer, which favors the formation of larger-size rolls. This study improves the understanding of the main factors affecting the structure and growth of rolls and will provide guidance for interpreting the spatial distribution of rolls under realistic hurricanes in observations and high-resolution simulations.
    publisherAmerican Meteorological Society
    titleOn the Characteristics of Linear-Phase Roll Vortices under a Moving Hurricane Boundary Layer
    typeJournal Paper
    journal volume75
    journal issue8
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-17-0363.1
    journal fristpage2589
    journal lastpage2598
    treeJournal of the Atmospheric Sciences:;2018:;volume 075:;issue 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian