Role of Surface Friction on Shallow Nonprecipitating ConvectionSource: Journal of the Atmospheric Sciences:;2017:;volume 075:;issue 001::page 163DOI: 10.1175/JAS-D-17-0106.1Publisher: American Meteorological Society
Abstract: AbstractThe role of surface friction on shallow nonprecipitating convection is investigated using a series of large-eddy simulations with varying surface friction velocity and with a cloud identification algorithm. As surface friction intensifies, convective rolls dominate over convective cells and secondary overturning circulation becomes stronger in the subcloud layer, thus transporting more moisture upward and more heat downward between the subcloud and cloud layers. Identifying individual clouds, using the identification algorithm based on a three-dimensional topological analysis, reveals that intensified surface friction increases the number of clouds and the degree of tilting in the downstream direction. Highly intensified surface friction increases wind shear across the cloud base and induces cloud tilting, which leads to a vertically parabolic profile of liquid water mixing ratio instead of the classical two-layer structure (conditionally unstable and trade inversion layers). Furthermore, cloud tilting induces more cloud cover and more cloud mass flux much above the cloud base (e.g., 0.8 < z < 1.2 km), but less cloud cover and less cloud mass flux in the upper cloud layer (e.g., z > 1.2 km) because of increased lateral entrainment rate. Similarly, profiles of directly measured entrainment and detrainment rates show that detrainment in the lower cloud layer becomes smaller with stronger surface friction.
|
Collections
Show full item record
contributor author | Park, Seung-Bu | |
contributor author | Böing, Steven | |
contributor author | Gentine, Pierre | |
date accessioned | 2019-09-19T10:07:08Z | |
date available | 2019-09-19T10:07:08Z | |
date copyright | 11/1/2017 12:00:00 AM | |
date issued | 2017 | |
identifier other | jas-d-17-0106.1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4261729 | |
description abstract | AbstractThe role of surface friction on shallow nonprecipitating convection is investigated using a series of large-eddy simulations with varying surface friction velocity and with a cloud identification algorithm. As surface friction intensifies, convective rolls dominate over convective cells and secondary overturning circulation becomes stronger in the subcloud layer, thus transporting more moisture upward and more heat downward between the subcloud and cloud layers. Identifying individual clouds, using the identification algorithm based on a three-dimensional topological analysis, reveals that intensified surface friction increases the number of clouds and the degree of tilting in the downstream direction. Highly intensified surface friction increases wind shear across the cloud base and induces cloud tilting, which leads to a vertically parabolic profile of liquid water mixing ratio instead of the classical two-layer structure (conditionally unstable and trade inversion layers). Furthermore, cloud tilting induces more cloud cover and more cloud mass flux much above the cloud base (e.g., 0.8 < z < 1.2 km), but less cloud cover and less cloud mass flux in the upper cloud layer (e.g., z > 1.2 km) because of increased lateral entrainment rate. Similarly, profiles of directly measured entrainment and detrainment rates show that detrainment in the lower cloud layer becomes smaller with stronger surface friction. | |
publisher | American Meteorological Society | |
title | Role of Surface Friction on Shallow Nonprecipitating Convection | |
type | Journal Paper | |
journal volume | 75 | |
journal issue | 1 | |
journal title | Journal of the Atmospheric Sciences | |
identifier doi | 10.1175/JAS-D-17-0106.1 | |
journal fristpage | 163 | |
journal lastpage | 178 | |
tree | Journal of the Atmospheric Sciences:;2017:;volume 075:;issue 001 | |
contenttype | Fulltext |