YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Tropical Cyclone Track Sensitivity in Deformation Steering Flow

    Source: Monthly Weather Review:;2018:;volume 146:;issue 010::page 3183
    Author:
    Torn, Ryan D.
    ,
    Elless, Travis J.
    ,
    Papin, Philippe P.
    ,
    Davis, Christopher A.
    DOI: 10.1175/MWR-D-18-0153.1
    Publisher: American Meteorological Society
    Abstract: AbstractPrevious studies have suggested that tropical cyclones (TCs) in deformation steering flows can be associated with large position errors and uncertainty. The goal of this study is to evaluate the sensitivity of position forecasts for three TCs within deformation wind fields [Debby (2012), Joaquin (2015), and Lionrock (2016)] using the ensemble-based sensitivity technique applied to European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble forecasts. In all three cases, the position forecasts are sensitive to uncertainty in the steering wind within 500 km of the 0-h TC position. Subsequently, the TC moves onto either side of the axis of contraction due to the ensemble perturbation steering flow. As a TC moves away from the saddle point, the ensemble members subsequently experience different ensemble-mean steering winds, which act to move the TC away from the ensemble-mean TC position along the axis of dilatation. By contrast, the position forecasts appear to exhibit less sensitivity to the steering wind more than 500 km from the initial TC position, even though the TC may interact with these features later in the forecast. Furthermore, forecasts initialized at later times are characterized by significantly lower position errors and uncertainty once it becomes clear on which side of the axis of contraction the TC will move. These results suggest that TCs in deformation steering flow could be inherently unpredictable and may benefit from densely sampling the near-storm steering flow and TC structure early in their lifetimes.
    • Download: (4.533Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Tropical Cyclone Track Sensitivity in Deformation Steering Flow

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4261343
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorTorn, Ryan D.
    contributor authorElless, Travis J.
    contributor authorPapin, Philippe P.
    contributor authorDavis, Christopher A.
    date accessioned2019-09-19T10:05:06Z
    date available2019-09-19T10:05:06Z
    date copyright8/2/2018 12:00:00 AM
    date issued2018
    identifier othermwr-d-18-0153.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4261343
    description abstractAbstractPrevious studies have suggested that tropical cyclones (TCs) in deformation steering flows can be associated with large position errors and uncertainty. The goal of this study is to evaluate the sensitivity of position forecasts for three TCs within deformation wind fields [Debby (2012), Joaquin (2015), and Lionrock (2016)] using the ensemble-based sensitivity technique applied to European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble forecasts. In all three cases, the position forecasts are sensitive to uncertainty in the steering wind within 500 km of the 0-h TC position. Subsequently, the TC moves onto either side of the axis of contraction due to the ensemble perturbation steering flow. As a TC moves away from the saddle point, the ensemble members subsequently experience different ensemble-mean steering winds, which act to move the TC away from the ensemble-mean TC position along the axis of dilatation. By contrast, the position forecasts appear to exhibit less sensitivity to the steering wind more than 500 km from the initial TC position, even though the TC may interact with these features later in the forecast. Furthermore, forecasts initialized at later times are characterized by significantly lower position errors and uncertainty once it becomes clear on which side of the axis of contraction the TC will move. These results suggest that TCs in deformation steering flow could be inherently unpredictable and may benefit from densely sampling the near-storm steering flow and TC structure early in their lifetimes.
    publisherAmerican Meteorological Society
    titleTropical Cyclone Track Sensitivity in Deformation Steering Flow
    typeJournal Paper
    journal volume146
    journal issue10
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-18-0153.1
    journal fristpage3183
    journal lastpage3201
    treeMonthly Weather Review:;2018:;volume 146:;issue 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian