YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Bulletin of the American Meteorological Society
    • View Item
    •   YE&T Library
    • AMS
    • Bulletin of the American Meteorological Society
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Defining Single Extreme Weather Events in a Climate Perspective

    Source: Bulletin of the American Meteorological Society:;2018:;volume 099:;issue 008::page 1557
    Author:
    Cattiaux, Julien
    ,
    Ribes, Aurélien
    DOI: 10.1175/BAMS-D-17-0281.1
    Publisher: American Meteorological Society
    Abstract: AbstractWeather extremes are the showcase of climate variability. Given their societal and environmental impacts, they are of great public interest. The prevention of natural hazards, the monitoring of single events, and, more recently, their attribution to anthropogenic climate change constitute key challenges for both weather services and scientific communities. Before a single event can be scrutinized, it must be properly defined; in particular, its spatiotemporal characteristics must be chosen. So far, this definition is made with some degree of arbitrariness, yet it might affect conclusions when explaining an extreme weather event from a climate perspective. Here, we propose a generic road map for defining single events as objectively as possible. In particular, as extreme events are inherently characterized by a small probability of occurrence, we suggest selecting the space?time characteristics that minimize this probability. In this way, we are able to automatically identify the spatiotemporal scale at which the event has been the most extreme. According to our methodology, the European heat wave of summer 2003 would be defined as a 2-week event over France and Spain and the Boulder, Colorado, intense rainfall of September 2013 a 5-day local event. Importantly, we show that in both cases, maximizing the rarity of the event does not maximize (or minimize) its fraction of attributable risk to anthropogenic climate change.
    • Download: (1.115Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Defining Single Extreme Weather Events in a Climate Perspective

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4261315
    Collections
    • Bulletin of the American Meteorological Society

    Show full item record

    contributor authorCattiaux, Julien
    contributor authorRibes, Aurélien
    date accessioned2019-09-19T10:04:55Z
    date available2019-09-19T10:04:55Z
    date copyright3/13/2018 12:00:00 AM
    date issued2018
    identifier otherbams-d-17-0281.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4261315
    description abstractAbstractWeather extremes are the showcase of climate variability. Given their societal and environmental impacts, they are of great public interest. The prevention of natural hazards, the monitoring of single events, and, more recently, their attribution to anthropogenic climate change constitute key challenges for both weather services and scientific communities. Before a single event can be scrutinized, it must be properly defined; in particular, its spatiotemporal characteristics must be chosen. So far, this definition is made with some degree of arbitrariness, yet it might affect conclusions when explaining an extreme weather event from a climate perspective. Here, we propose a generic road map for defining single events as objectively as possible. In particular, as extreme events are inherently characterized by a small probability of occurrence, we suggest selecting the space?time characteristics that minimize this probability. In this way, we are able to automatically identify the spatiotemporal scale at which the event has been the most extreme. According to our methodology, the European heat wave of summer 2003 would be defined as a 2-week event over France and Spain and the Boulder, Colorado, intense rainfall of September 2013 a 5-day local event. Importantly, we show that in both cases, maximizing the rarity of the event does not maximize (or minimize) its fraction of attributable risk to anthropogenic climate change.
    publisherAmerican Meteorological Society
    titleDefining Single Extreme Weather Events in a Climate Perspective
    typeJournal Paper
    journal volume99
    journal issue8
    journal titleBulletin of the American Meteorological Society
    identifier doi10.1175/BAMS-D-17-0281.1
    journal fristpage1557
    journal lastpage1568
    treeBulletin of the American Meteorological Society:;2018:;volume 099:;issue 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian