YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Predictability of Sudden Stratospheric Warmings in the ECMWF Extended-Range Forecast System

    Source: Monthly Weather Review:;2018:;volume 146:;issue 004::page 1063
    Author:
    Karpechko, Alexey Yu.
    DOI: 10.1175/MWR-D-17-0317.1
    Publisher: American Meteorological Society
    Abstract: AbstractThe skill of the Arctic stratospheric retrospective ensemble forecasts (hindcasts) of the European Centre for Medium-Range Weather Forecasts extended-range system is analyzed with a focus on the predictability of the major sudden stratospheric warmings (SSWs) during the period 1993?2016. Thirteen SSWs took place during this period. It is found that forecasts initialized 10?15 days before the SSWs show worse skill in the stratosphere than forecasts initialized during normal conditions in terms of root-mean-square errors but not in terms of anomaly correlation. Using the spread of ensemble members to estimate forecasted SSW probability, it is shown that some SSWs can be predicted with high (>0.9) probability at lead times of 12?13 days if a difference of 3 days between actual and forecasted SSW is allowed. Focusing on SSWs with significant impacts on the tropospheric circulation, on average, the forecasted SSW probability is found to increase from nearly 0 at 1-month lead time to 0.3 at day 13 before SSW, and then rapidly increases to nearly 1 at day 7. The period between days 8 and 12 is when most of the SSWs are predicted, with a probability of 0.5?0.9, which is considerably larger than the observed SSW occurrence frequency. Therefore, this period can be thought of as an estimate of the SSW predictability limit in this system. Indications that the predictability limit for some SSWs may be longer than 2 weeks are also found; however, this result is inconclusive and more studies are needed to understand when and why such long predictability is possible.
    • Download: (2.628Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Predictability of Sudden Stratospheric Warmings in the ECMWF Extended-Range Forecast System

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4261257
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorKarpechko, Alexey Yu.
    date accessioned2019-09-19T10:04:36Z
    date available2019-09-19T10:04:36Z
    date copyright3/2/2018 12:00:00 AM
    date issued2018
    identifier othermwr-d-17-0317.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4261257
    description abstractAbstractThe skill of the Arctic stratospheric retrospective ensemble forecasts (hindcasts) of the European Centre for Medium-Range Weather Forecasts extended-range system is analyzed with a focus on the predictability of the major sudden stratospheric warmings (SSWs) during the period 1993?2016. Thirteen SSWs took place during this period. It is found that forecasts initialized 10?15 days before the SSWs show worse skill in the stratosphere than forecasts initialized during normal conditions in terms of root-mean-square errors but not in terms of anomaly correlation. Using the spread of ensemble members to estimate forecasted SSW probability, it is shown that some SSWs can be predicted with high (>0.9) probability at lead times of 12?13 days if a difference of 3 days between actual and forecasted SSW is allowed. Focusing on SSWs with significant impacts on the tropospheric circulation, on average, the forecasted SSW probability is found to increase from nearly 0 at 1-month lead time to 0.3 at day 13 before SSW, and then rapidly increases to nearly 1 at day 7. The period between days 8 and 12 is when most of the SSWs are predicted, with a probability of 0.5?0.9, which is considerably larger than the observed SSW occurrence frequency. Therefore, this period can be thought of as an estimate of the SSW predictability limit in this system. Indications that the predictability limit for some SSWs may be longer than 2 weeks are also found; however, this result is inconclusive and more studies are needed to understand when and why such long predictability is possible.
    publisherAmerican Meteorological Society
    titlePredictability of Sudden Stratospheric Warmings in the ECMWF Extended-Range Forecast System
    typeJournal Paper
    journal volume146
    journal issue4
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-17-0317.1
    journal fristpage1063
    journal lastpage1075
    treeMonthly Weather Review:;2018:;volume 146:;issue 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian