YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Elevated Mixed Layers and Associated Severe Thunderstorm Environments in South and North America

    Source: Monthly Weather Review:;2017:;volume 146:;issue 001::page 3
    Author:
    Ribeiro, Bruno Z.
    ,
    Bosart, Lance F.
    DOI: 10.1175/MWR-D-17-0121.1
    Publisher: American Meteorological Society
    Abstract: AbstractThis study presents a climatological and composite analysis of elevated mixed layers (EMLs) in South and North America derived from the NCEP Climate Forecast System Reanalysis. The EMLs are identified based on objective criteria applied to the reanalysis data. Composite analyses of synoptic-scale conditions and severe weather parameters associated with spring EML cases are presented. EMLs are more frequent immediately to the east of the Andes and the Rockies. The North American EMLs form by surface heating over the higher terrain of the Rockies, with peak frequency occurring in spring and summer. EMLs in South America are generated by differential temperature advection due to ageostrophic circulations east of the Andes, as indicated by the temperature lapse rate tendency equation, which relates to the higher frequency of EMLs during the cold season in South America. EMLs over North America are about 100 hPa lower than over South America due to the lower height of the Rockies in comparison to the Andes. The synoptic conditions associated with EMLs in South and North America are characterized by an upper-level trough upstream and low-level moisture flux convergence due to poleward-directed flow, favoring synoptic-scale ascent poleward of the EML location, where the convective inhibition is relatively low. When EMLs occur, higher surface-based convective available potential energy and low-level storm-relative helicity, in association with lower lifting condensation level heights observed in North America, indicate that surface-based supercell storms and tornadoes are more likely to occur on this continent in comparison with South America, corroborating observations.
    • Download: (8.842Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Elevated Mixed Layers and Associated Severe Thunderstorm Environments in South and North America

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4261166
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorRibeiro, Bruno Z.
    contributor authorBosart, Lance F.
    date accessioned2019-09-19T10:04:05Z
    date available2019-09-19T10:04:05Z
    date copyright10/30/2017 12:00:00 AM
    date issued2017
    identifier othermwr-d-17-0121.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4261166
    description abstractAbstractThis study presents a climatological and composite analysis of elevated mixed layers (EMLs) in South and North America derived from the NCEP Climate Forecast System Reanalysis. The EMLs are identified based on objective criteria applied to the reanalysis data. Composite analyses of synoptic-scale conditions and severe weather parameters associated with spring EML cases are presented. EMLs are more frequent immediately to the east of the Andes and the Rockies. The North American EMLs form by surface heating over the higher terrain of the Rockies, with peak frequency occurring in spring and summer. EMLs in South America are generated by differential temperature advection due to ageostrophic circulations east of the Andes, as indicated by the temperature lapse rate tendency equation, which relates to the higher frequency of EMLs during the cold season in South America. EMLs over North America are about 100 hPa lower than over South America due to the lower height of the Rockies in comparison to the Andes. The synoptic conditions associated with EMLs in South and North America are characterized by an upper-level trough upstream and low-level moisture flux convergence due to poleward-directed flow, favoring synoptic-scale ascent poleward of the EML location, where the convective inhibition is relatively low. When EMLs occur, higher surface-based convective available potential energy and low-level storm-relative helicity, in association with lower lifting condensation level heights observed in North America, indicate that surface-based supercell storms and tornadoes are more likely to occur on this continent in comparison with South America, corroborating observations.
    publisherAmerican Meteorological Society
    titleElevated Mixed Layers and Associated Severe Thunderstorm Environments in South and North America
    typeJournal Paper
    journal volume146
    journal issue1
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-17-0121.1
    journal fristpage3
    journal lastpage28
    treeMonthly Weather Review:;2017:;volume 146:;issue 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian