YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluation of RapidScat Ocean Vector Winds for Data Assimilation and Reanalysis

    Source: Monthly Weather Review:;2017:;volume 146:;issue 001::page 199
    Author:
    McCarty, Will
    ,
    Chattopadhyay, Mohar
    ,
    Conaty, Austin
    DOI: 10.1175/MWR-D-17-0117.1
    Publisher: American Meteorological Society
    Abstract: AbstractThe Rapid Scatterometer (RapidScat) was built as a low-cost follow-on to the QuikSCAT mission. It flew on the International Space Station (ISS) and provided data from 3 October 2014 to 20 August 2016. These data allowed for the retrieval of surface wind vectors derived from surface roughness estimates measured from multiple coincident azimuth angles. These measurements were unique to the historical scatterometer record in that the ISS flies in a low inclination, non-sun-synchronous orbit. Scatterometry-derived wind vectors have been routinely assimilated in both forward processing and reanalysis systems run at the Global Modeling and Assimilation Office (GMAO). As the RapidScat retrievals were made available in near?real time, they were assimilated in the forward processing system, and the methods to assimilate and evaluate these retrievals are described. Time series of data statistics are presented first for the near-real-time data assimilated in GMAO forward processing. Second, the full data products provided by the RapidScat team are compared passively to the MERRA-2 reanalysis. Both sets of results show that the root-mean-square (RMS) difference of the observations and the GMAO model background fields increased over the course of the data record. Furthermore, the observations and the backgrounds are shown to be biased for both the zonal and meridional wind components. The retrievals are shown to have had a net forecast error reduction via the forecast sensitivity observation impact (FSOI) metric, which is a quantification of 24-h forecast error reduction, though the impact became neutral as the signal-to-noise ratio of the instrument decreased over its lifespan.
    • Download: (1.056Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluation of RapidScat Ocean Vector Winds for Data Assimilation and Reanalysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4261164
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorMcCarty, Will
    contributor authorChattopadhyay, Mohar
    contributor authorConaty, Austin
    date accessioned2019-09-19T10:04:04Z
    date available2019-09-19T10:04:04Z
    date copyright12/6/2017 12:00:00 AM
    date issued2017
    identifier othermwr-d-17-0117.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4261164
    description abstractAbstractThe Rapid Scatterometer (RapidScat) was built as a low-cost follow-on to the QuikSCAT mission. It flew on the International Space Station (ISS) and provided data from 3 October 2014 to 20 August 2016. These data allowed for the retrieval of surface wind vectors derived from surface roughness estimates measured from multiple coincident azimuth angles. These measurements were unique to the historical scatterometer record in that the ISS flies in a low inclination, non-sun-synchronous orbit. Scatterometry-derived wind vectors have been routinely assimilated in both forward processing and reanalysis systems run at the Global Modeling and Assimilation Office (GMAO). As the RapidScat retrievals were made available in near?real time, they were assimilated in the forward processing system, and the methods to assimilate and evaluate these retrievals are described. Time series of data statistics are presented first for the near-real-time data assimilated in GMAO forward processing. Second, the full data products provided by the RapidScat team are compared passively to the MERRA-2 reanalysis. Both sets of results show that the root-mean-square (RMS) difference of the observations and the GMAO model background fields increased over the course of the data record. Furthermore, the observations and the backgrounds are shown to be biased for both the zonal and meridional wind components. The retrievals are shown to have had a net forecast error reduction via the forecast sensitivity observation impact (FSOI) metric, which is a quantification of 24-h forecast error reduction, though the impact became neutral as the signal-to-noise ratio of the instrument decreased over its lifespan.
    publisherAmerican Meteorological Society
    titleEvaluation of RapidScat Ocean Vector Winds for Data Assimilation and Reanalysis
    typeJournal Paper
    journal volume146
    journal issue1
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-17-0117.1
    journal fristpage199
    journal lastpage211
    treeMonthly Weather Review:;2017:;volume 146:;issue 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian