An Efficient State–Parameter Filtering Scheme Combining Ensemble Kalman and Particle FiltersSource: Monthly Weather Review:;2017:;volume 146:;issue 003::page 871DOI: 10.1175/MWR-D-16-0485.1Publisher: American Meteorological Society
Abstract: AbstractThis work addresses the state?parameter filtering problem for dynamical systems with relatively large-dimensional state and low-dimensional parameters? vector. A Bayesian filtering algorithm combining the strengths of the particle filter (PF) and the ensemble Kalman filter (EnKF) is proposed. At each assimilation cycle of the proposed EnKF?PF, the PF is first used to sample the parameters? ensemble followed by the EnKF to compute the state ensemble conditional on the resulting parameters? ensemble. The proposed scheme is expected to be more efficient than the traditional state augmentation techniques, which suffer from the curse of dimensionality and inconsistency that is particularly pronounced when the state is a strongly nonlinear function of the parameters. In the new scheme, the EnKF and PF interact via their ensembles? members, in contrast with the recently introduced two-stage EnKF?PF (TS?EnKF?PF), which exchanges point estimates between EnKF and PF while requiring almost double the computational load. Numerical experiments are conducted with the Lorenz-96 model to assess the behavior of the proposed filter and to evaluate its performances against the joint PF, joint EnKF, and TS?EnKF?PF. Numerical results suggest that the EnKF?PF performs best in all tested scenarios. It was further found to be more robust, successfully estimating both state and parameters in different sensitivity experiments.
|
Collections
Show full item record
contributor author | Ait-El-Fquih, Boujemaa | |
contributor author | Hoteit, Ibrahim | |
date accessioned | 2019-09-19T10:03:58Z | |
date available | 2019-09-19T10:03:58Z | |
date copyright | 12/11/2017 12:00:00 AM | |
date issued | 2017 | |
identifier other | mwr-d-16-0485.1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4261146 | |
description abstract | AbstractThis work addresses the state?parameter filtering problem for dynamical systems with relatively large-dimensional state and low-dimensional parameters? vector. A Bayesian filtering algorithm combining the strengths of the particle filter (PF) and the ensemble Kalman filter (EnKF) is proposed. At each assimilation cycle of the proposed EnKF?PF, the PF is first used to sample the parameters? ensemble followed by the EnKF to compute the state ensemble conditional on the resulting parameters? ensemble. The proposed scheme is expected to be more efficient than the traditional state augmentation techniques, which suffer from the curse of dimensionality and inconsistency that is particularly pronounced when the state is a strongly nonlinear function of the parameters. In the new scheme, the EnKF and PF interact via their ensembles? members, in contrast with the recently introduced two-stage EnKF?PF (TS?EnKF?PF), which exchanges point estimates between EnKF and PF while requiring almost double the computational load. Numerical experiments are conducted with the Lorenz-96 model to assess the behavior of the proposed filter and to evaluate its performances against the joint PF, joint EnKF, and TS?EnKF?PF. Numerical results suggest that the EnKF?PF performs best in all tested scenarios. It was further found to be more robust, successfully estimating both state and parameters in different sensitivity experiments. | |
publisher | American Meteorological Society | |
title | An Efficient State–Parameter Filtering Scheme Combining Ensemble Kalman and Particle Filters | |
type | Journal Paper | |
journal volume | 146 | |
journal issue | 3 | |
journal title | Monthly Weather Review | |
identifier doi | 10.1175/MWR-D-16-0485.1 | |
journal fristpage | 871 | |
journal lastpage | 887 | |
tree | Monthly Weather Review:;2017:;volume 146:;issue 003 | |
contenttype | Fulltext |