YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Application of the EMD Method to River Tides

    Source: Journal of Atmospheric and Oceanic Technology:;2018:;volume 035:;issue 004::page 809
    Author:
    Pan, Haidong
    ,
    Guo, Zheng
    ,
    Wang, Yingying
    ,
    Lv, Xianqing
    DOI: 10.1175/JTECH-D-17-0185.1
    Publisher: American Meteorological Society
    Abstract: AbstractA lot of tidal phenomena, including river tides, tides in ice-covered bays, and internal tides in fjords, are nonstationary. These tidal processes present a severe challenge for the conventional tidal analysis method. The empirical mode decomposition (EMD) method is useful for nonstationary and nonlinear time series and has been used for different geophysical data. However, application of EMD to nonstationary tides is rare. This paper is meant to demonstrate a new tidal analysis tool that can help study nonstationary tides, in this case river tides. EMD is applied to a set of hourly water level records on the lower Columbia River, where the tides are greatly influenced by the fluctuating river flow. The results show that the averaged period of any EMD mode almost exactly doubles that of the previous one, suggesting that EMD is a dyadic filter. The highest and second highest frequency modes of EMD represent the semidiurnal (D2) and diurnal (D1) tides, respectively. The sum of the EMD modes except for the first two is the mean water level (MWL). The study finds that the EMD method successfully captured the nonstationary characteristics of the D1 tides, the D2 tides, and the MWL induced by river flow.
    • Download: (1.790Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Application of the EMD Method to River Tides

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4261086
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorPan, Haidong
    contributor authorGuo, Zheng
    contributor authorWang, Yingying
    contributor authorLv, Xianqing
    date accessioned2019-09-19T10:03:38Z
    date available2019-09-19T10:03:38Z
    date copyright2/8/2018 12:00:00 AM
    date issued2018
    identifier otherjtech-d-17-0185.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4261086
    description abstractAbstractA lot of tidal phenomena, including river tides, tides in ice-covered bays, and internal tides in fjords, are nonstationary. These tidal processes present a severe challenge for the conventional tidal analysis method. The empirical mode decomposition (EMD) method is useful for nonstationary and nonlinear time series and has been used for different geophysical data. However, application of EMD to nonstationary tides is rare. This paper is meant to demonstrate a new tidal analysis tool that can help study nonstationary tides, in this case river tides. EMD is applied to a set of hourly water level records on the lower Columbia River, where the tides are greatly influenced by the fluctuating river flow. The results show that the averaged period of any EMD mode almost exactly doubles that of the previous one, suggesting that EMD is a dyadic filter. The highest and second highest frequency modes of EMD represent the semidiurnal (D2) and diurnal (D1) tides, respectively. The sum of the EMD modes except for the first two is the mean water level (MWL). The study finds that the EMD method successfully captured the nonstationary characteristics of the D1 tides, the D2 tides, and the MWL induced by river flow.
    publisherAmerican Meteorological Society
    titleApplication of the EMD Method to River Tides
    typeJournal Paper
    journal volume35
    journal issue4
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH-D-17-0185.1
    journal fristpage809
    journal lastpage819
    treeJournal of Atmospheric and Oceanic Technology:;2018:;volume 035:;issue 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian