YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Ocean and Ice Shelf Tides from CryoSat-2 Altimetry

    Source: Journal of Physical Oceanography:;2018:;volume 048:;issue 004::page 975
    Author:
    Zaron, Edward D.
    DOI: 10.1175/JPO-D-17-0247.1
    Publisher: American Meteorological Society
    Abstract: AbstractA new empirical model of ocean tides has been developed for the Weddell Sea, south of 66°S, between 90°W and 0°, using six years of radar altimeter data from the CryoSat-2 satellite mission. Because of its long ground-track repeat period (368 days) and its diverse measurement modes, low-rate mode (LRM) over the ocean and synthetic aperture radar interferometric mode (SARin) over ice surfaces and parts of the ocean, the CryoSat-2 data pose a number of challenges for tidal analysis. The space and time sampling properties of the exact repeat, near-repeat, and crossover ground tracks have been analyzed to discover which tides may be estimated using a combination of conventional harmonic analysis and local spatial regression. Using this information, the M2, S2, K2, N2, K1, O1, P1, and Q1 tides have been mapped for both the ocean and floating ice shelves in this domain. Validation against independent in situ data, along with comparison with existing tide models, finds that the CryoSat-2-derived tides are consistent with previous estimates and that they are more accurate than other models at the M2 and S2 frequencies. The high inclination of the CryoSat-2 orbit causes the orbit plane to precess relatively slowly, which leads to significantly less accurate estimates of the K2 tide. This purely empirical model ought to provide improved tidal corrections for studies of low-frequency variability and secular trends in ice shelf thickness, and it suggests that further increases in quantitative accuracy could be achieved by assimilation of CryoSat-2 data into dynamical tide models.
    • Download: (6.768Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Ocean and Ice Shelf Tides from CryoSat-2 Altimetry

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4260954
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorZaron, Edward D.
    date accessioned2019-09-19T10:02:54Z
    date available2019-09-19T10:02:54Z
    date copyright3/13/2018 12:00:00 AM
    date issued2018
    identifier otherjpo-d-17-0247.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4260954
    description abstractAbstractA new empirical model of ocean tides has been developed for the Weddell Sea, south of 66°S, between 90°W and 0°, using six years of radar altimeter data from the CryoSat-2 satellite mission. Because of its long ground-track repeat period (368 days) and its diverse measurement modes, low-rate mode (LRM) over the ocean and synthetic aperture radar interferometric mode (SARin) over ice surfaces and parts of the ocean, the CryoSat-2 data pose a number of challenges for tidal analysis. The space and time sampling properties of the exact repeat, near-repeat, and crossover ground tracks have been analyzed to discover which tides may be estimated using a combination of conventional harmonic analysis and local spatial regression. Using this information, the M2, S2, K2, N2, K1, O1, P1, and Q1 tides have been mapped for both the ocean and floating ice shelves in this domain. Validation against independent in situ data, along with comparison with existing tide models, finds that the CryoSat-2-derived tides are consistent with previous estimates and that they are more accurate than other models at the M2 and S2 frequencies. The high inclination of the CryoSat-2 orbit causes the orbit plane to precess relatively slowly, which leads to significantly less accurate estimates of the K2 tide. This purely empirical model ought to provide improved tidal corrections for studies of low-frequency variability and secular trends in ice shelf thickness, and it suggests that further increases in quantitative accuracy could be achieved by assimilation of CryoSat-2 data into dynamical tide models.
    publisherAmerican Meteorological Society
    titleOcean and Ice Shelf Tides from CryoSat-2 Altimetry
    typeJournal Paper
    journal volume48
    journal issue4
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO-D-17-0247.1
    journal fristpage975
    journal lastpage993
    treeJournal of Physical Oceanography:;2018:;volume 048:;issue 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian