contributor author | Lentz, S. J. | |
contributor author | Churchill, J. H. | |
contributor author | Davis, K. A. | |
date accessioned | 2019-09-19T10:02:49Z | |
date available | 2019-09-19T10:02:49Z | |
date copyright | 5/31/2018 12:00:00 AM | |
date issued | 2018 | |
identifier other | jpo-d-17-0231.1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4260943 | |
description abstract | AbstractA primary challenge in modeling flow over shallow coral reefs is accurately characterizing the bottom drag. Previous studies over continental shelves and sandy beaches suggest surface gravity waves should enhance the drag on the circulation over coral reefs. The influence of surface gravity waves on drag over four platform reefs in the Red Sea is examined using observations from 6-month deployments of current and pressure sensors burst sampling at 1 Hz for 4?5 min. Depth-average current fluctuations U? within each burst are dominated by wave orbital velocities uw that account for 80%?90% of the burst variance and have a magnitude of order 10 cm s?1, similar to the lower-frequency depth-average current Uavg. Previous studies have shown that the cross-reef bottom stress balances the pressure gradient over these reefs. A bottom stress estimate that neglects the waves (?CdaUavg|Uavg|, where ? is water density and Cda is a drag coefficient) balances the observed pressure gradient when uw is smaller than Uavg but underestimates the pressure gradient when uw is larger than Uavg (by a factor of 3?5 when uw = 2Uavg), indicating the neglected waves enhance the bottom stress. In contrast, a bottom stress estimate that includes the waves [?Cda(Uavg + U?)|Uavg + U?|)] balances the observed pressure gradient independent of the relative size of uw and Uavg, indicating that this estimate accounts for the wave enhancement of the bottom stress. A parameterization proposed by Wright and Thompson provides a reasonable estimate of the total bottom stress (including the waves) given the burst-averaged current and the wave orbital velocity. | |
publisher | American Meteorological Society | |
title | Coral Reef Drag Coefficients—Surface Gravity Wave Enhancement | |
type | Journal Paper | |
journal volume | 48 | |
journal issue | 7 | |
journal title | Journal of Physical Oceanography | |
identifier doi | 10.1175/JPO-D-17-0231.1 | |
journal fristpage | 1555 | |
journal lastpage | 1566 | |
tree | Journal of Physical Oceanography:;2018:;volume 048:;issue 007 | |
contenttype | Fulltext | |