YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Wave-Resolving Simulation of Langmuir Circulations with a Nonhydrostatic Free-Surface Model: Comparison with Craik–Leibovich Theory and an Alternative Eulerian View of the Driving Mechanism

    Source: Journal of Physical Oceanography:;2018:;volume 048:;issue 008::page 1691
    Author:
    Fujiwara, Yasushi
    ,
    Yoshikawa, Yutaka
    ,
    Matsumura, Yoshimasa
    DOI: 10.1175/JPO-D-17-0199.1
    Publisher: American Meteorological Society
    Abstract: AbstractThe present study performs a wave-resolving simulation of wind-driven currents under monochromatic surface gravity waves using the latest nonhydrostatic free-surface numerical model. Here, phase speed of the waves is set much greater than the current speed. Roll structures very similar to observed Langmuir circulations (LCs) appear in the simulation only when both waves and down-wave surface currents are present, demonstrating that the rolls are driven by the wave?current interaction. A vorticity analysis of simulated mean flow reveals that the rolls are driven by the torque associated with wave motion, which arises from a correlation between wave-induced vorticity fluctuation and the wave motion itself. Furthermore, it is confirmed that the wave-induced torque is very well represented by the curl of the vortex force (VF), that is, the vector product of mean vorticity and Stokes drift velocity. Therefore, it is concluded that the simulated rolls are LCs and that the wave effects are well represented by the VF expression in the present simulation. The present study further revisits the scaling assumptions made by previous studies that derived VF formulation and shows that there is disagreement among the previous studies regarding the applicability of VF formulation when the wave orbital velocity (proportional to the amplitude times the frequency) is much smaller than the mean flow velocity. The result from the present simulation shows that the VF expression is still valid even with such small wave amplitudes, as long as phase speed of the waves is much greater than the current speed.
    • Download: (2.544Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Wave-Resolving Simulation of Langmuir Circulations with a Nonhydrostatic Free-Surface Model: Comparison with Craik–Leibovich Theory and an Alternative Eulerian View of the Driving Mechanism

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4260929
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorFujiwara, Yasushi
    contributor authorYoshikawa, Yutaka
    contributor authorMatsumura, Yoshimasa
    date accessioned2019-09-19T10:02:44Z
    date available2019-09-19T10:02:44Z
    date copyright6/28/2018 12:00:00 AM
    date issued2018
    identifier otherjpo-d-17-0199.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4260929
    description abstractAbstractThe present study performs a wave-resolving simulation of wind-driven currents under monochromatic surface gravity waves using the latest nonhydrostatic free-surface numerical model. Here, phase speed of the waves is set much greater than the current speed. Roll structures very similar to observed Langmuir circulations (LCs) appear in the simulation only when both waves and down-wave surface currents are present, demonstrating that the rolls are driven by the wave?current interaction. A vorticity analysis of simulated mean flow reveals that the rolls are driven by the torque associated with wave motion, which arises from a correlation between wave-induced vorticity fluctuation and the wave motion itself. Furthermore, it is confirmed that the wave-induced torque is very well represented by the curl of the vortex force (VF), that is, the vector product of mean vorticity and Stokes drift velocity. Therefore, it is concluded that the simulated rolls are LCs and that the wave effects are well represented by the VF expression in the present simulation. The present study further revisits the scaling assumptions made by previous studies that derived VF formulation and shows that there is disagreement among the previous studies regarding the applicability of VF formulation when the wave orbital velocity (proportional to the amplitude times the frequency) is much smaller than the mean flow velocity. The result from the present simulation shows that the VF expression is still valid even with such small wave amplitudes, as long as phase speed of the waves is much greater than the current speed.
    publisherAmerican Meteorological Society
    titleA Wave-Resolving Simulation of Langmuir Circulations with a Nonhydrostatic Free-Surface Model: Comparison with Craik–Leibovich Theory and an Alternative Eulerian View of the Driving Mechanism
    typeJournal Paper
    journal volume48
    journal issue8
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO-D-17-0199.1
    journal fristpage1691
    journal lastpage1708
    treeJournal of Physical Oceanography:;2018:;volume 048:;issue 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian