YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Upgradient and Downgradient Potential Vorticity Fluxes Produced by Forced Rossby Waves. Part I: Basic Experiments

    Source: Journal of Physical Oceanography:;2018:;volume 048:;issue 005::page 1191
    Author:
    Mizuta, Genta
    DOI: 10.1175/JPO-D-17-0197.1
    Publisher: American Meteorological Society
    Abstract: AbstractThe mean flow and potential vorticity (PV) flux produced by Rossby waves are examined, particularly by focusing on the effects of stratification and nonlinearity on upgradient and downgradient PV fluxes. Rossby waves are excited by an external forcing confined near the surface and produce a northward (upgradient) PV flux in the surface layer. While the meridional PV flux is considerably weak in the deep layer in the weakly nonlinear case, the southward (downgradient) PV flux is produced as nonlinearity increases. In both the surface and deep layers, the distribution of the PV flux and mean flow is qualitatively similar to that in recirculation gyres obtained in an eddy-resolving model of the wind-driven circulation. A perturbation analysis shows that the primary and harmonic waves are excited by external forcing and wave?wave interaction between the primary waves, respectively. The meridional PV fluxes in the surface and deep layers are mostly produced by the primary and harmonic waves, respectively. The southward PV flux in the deep layer is produced by the interaction between the barotropic harmonic wave and the first baroclinic component of nonlinear forcing by the primary waves. The irreversible processes that are implicitly assumed in the PV homogenization theory (Rhines and Young) do not substantially affect the southward PV flux. The qualitative features of the PV flux remain unchanged even when nonlinearity is increased beyond the range in which the perturbation theory is exactly applicable.
    • Download: (1.671Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Upgradient and Downgradient Potential Vorticity Fluxes Produced by Forced Rossby Waves. Part I: Basic Experiments

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4260926
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorMizuta, Genta
    date accessioned2019-09-19T10:02:43Z
    date available2019-09-19T10:02:43Z
    date copyright4/6/2018 12:00:00 AM
    date issued2018
    identifier otherjpo-d-17-0197.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4260926
    description abstractAbstractThe mean flow and potential vorticity (PV) flux produced by Rossby waves are examined, particularly by focusing on the effects of stratification and nonlinearity on upgradient and downgradient PV fluxes. Rossby waves are excited by an external forcing confined near the surface and produce a northward (upgradient) PV flux in the surface layer. While the meridional PV flux is considerably weak in the deep layer in the weakly nonlinear case, the southward (downgradient) PV flux is produced as nonlinearity increases. In both the surface and deep layers, the distribution of the PV flux and mean flow is qualitatively similar to that in recirculation gyres obtained in an eddy-resolving model of the wind-driven circulation. A perturbation analysis shows that the primary and harmonic waves are excited by external forcing and wave?wave interaction between the primary waves, respectively. The meridional PV fluxes in the surface and deep layers are mostly produced by the primary and harmonic waves, respectively. The southward PV flux in the deep layer is produced by the interaction between the barotropic harmonic wave and the first baroclinic component of nonlinear forcing by the primary waves. The irreversible processes that are implicitly assumed in the PV homogenization theory (Rhines and Young) do not substantially affect the southward PV flux. The qualitative features of the PV flux remain unchanged even when nonlinearity is increased beyond the range in which the perturbation theory is exactly applicable.
    publisherAmerican Meteorological Society
    titleUpgradient and Downgradient Potential Vorticity Fluxes Produced by Forced Rossby Waves. Part I: Basic Experiments
    typeJournal Paper
    journal volume48
    journal issue5
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO-D-17-0197.1
    journal fristpage1191
    journal lastpage1209
    treeJournal of Physical Oceanography:;2018:;volume 048:;issue 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian