YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Convective Variability Associated with the Boreal Summer Intraseasonal Oscillation in the South China Sea Region

    Source: Journal of Climate:;2018:;volume 031:;issue 018::page 7363
    Author:
    Xu, Weixin
    ,
    Rutledge, Steven A.
    DOI: 10.1175/JCLI-D-18-0091.1
    Publisher: American Meteorological Society
    Abstract: AbstractThis study investigates the convective cloud population, precipitation microphysics, and lightning activity associated with the boreal summer intraseasonal oscillation (BSISO) over the South China Sea (SCS) and surrounding landmasses. SCS rainfall shows a marked 30?60-day intraseasonal variability. This variability is less evident over land. The population of mesoscale convective systems (MCSs) and the stratiform rain fraction over the SCS, Philippines, and Indochina increase remarkably after the onset of BSISO. Convection over the SCS during inactive periods exhibits a trimodal population including shallow cumulus, congestus, and deep convection, mirroring the situation over tropical open oceans. The shallow mode is absent over land. Shallow cumulus clouds rapidly transition to congestus clouds over the SCS under active BSISO conditions. Over land, deep convection and lightning lead total rainfall and MCSs by 2?3 BSISO phases, whereas they are somewhat in phase over the SCS. Although convective instability over the SCS is larger during active periods compared to inactive periods, variability in convective intensity and precipitation microphysics is minimal, with active periods showing only higher frequency of moderate ice scattering and 30-dBZ heights extending to ?10°C. Over the Philippines and Indochina, inactive phases exhibit substantially stronger ice scattering signatures, robust mixed-phase microphysics, and higher lightning flash rates, possibly due to greater convective instability and a stronger convective diurnal cycle. Total rainfall, convective environments, and convective structures over Borneo are all out of phase with that over the Philippines and Indochina, while southern China shows little BSISO variability on convective intensity and lightning frequency.
    • Download: (7.258Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Convective Variability Associated with the Boreal Summer Intraseasonal Oscillation in the South China Sea Region

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4260686
    Collections
    • Journal of Climate

    Show full item record

    contributor authorXu, Weixin
    contributor authorRutledge, Steven A.
    date accessioned2019-09-19T10:01:23Z
    date available2019-09-19T10:01:23Z
    date copyright6/22/2018 12:00:00 AM
    date issued2018
    identifier otherjcli-d-18-0091.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4260686
    description abstractAbstractThis study investigates the convective cloud population, precipitation microphysics, and lightning activity associated with the boreal summer intraseasonal oscillation (BSISO) over the South China Sea (SCS) and surrounding landmasses. SCS rainfall shows a marked 30?60-day intraseasonal variability. This variability is less evident over land. The population of mesoscale convective systems (MCSs) and the stratiform rain fraction over the SCS, Philippines, and Indochina increase remarkably after the onset of BSISO. Convection over the SCS during inactive periods exhibits a trimodal population including shallow cumulus, congestus, and deep convection, mirroring the situation over tropical open oceans. The shallow mode is absent over land. Shallow cumulus clouds rapidly transition to congestus clouds over the SCS under active BSISO conditions. Over land, deep convection and lightning lead total rainfall and MCSs by 2?3 BSISO phases, whereas they are somewhat in phase over the SCS. Although convective instability over the SCS is larger during active periods compared to inactive periods, variability in convective intensity and precipitation microphysics is minimal, with active periods showing only higher frequency of moderate ice scattering and 30-dBZ heights extending to ?10°C. Over the Philippines and Indochina, inactive phases exhibit substantially stronger ice scattering signatures, robust mixed-phase microphysics, and higher lightning flash rates, possibly due to greater convective instability and a stronger convective diurnal cycle. Total rainfall, convective environments, and convective structures over Borneo are all out of phase with that over the Philippines and Indochina, while southern China shows little BSISO variability on convective intensity and lightning frequency.
    publisherAmerican Meteorological Society
    titleConvective Variability Associated with the Boreal Summer Intraseasonal Oscillation in the South China Sea Region
    typeJournal Paper
    journal volume31
    journal issue18
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-18-0091.1
    journal fristpage7363
    journal lastpage7383
    treeJournal of Climate:;2018:;volume 031:;issue 018
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian