YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Infrastructure Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Infrastructure Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Statistical Inference of Sewer Pipe Deterioration Using Bayesian Geoadditive Regression Model

    Source: Journal of Infrastructure Systems:;2019:;Volume ( 025 ):;issue: 003
    Author:
    Ngandu Balekelayi
    ,
    Solomon Tesfamariam
    DOI: 10.1061/(ASCE)IS.1943-555X.0000500
    Publisher: American Society of Civil Engineers
    Abstract: Several deterioration models have been developed for prediction of the actual and future condition states of individual sewer pipes. However, most tools that have been developed assume a linear dependency between the predictor and the structural condition response. Moreover, unobserved variables are not included in the models. Physical processes, such as the deterioration of pipes, are complex, and a nonlinear dependency between the covariates and the condition of the pipes is more realistic. This study applied a Bayesian geoadditive regression model to predict sewer pipe deterioration scores from a set of predictors categorized as physical, maintenance, and environmental data. The first and second groups of covariates were allowed to affect the response variables linearly and nonlinearly. However, the third group of data was represented by a surrogate variable to account for unobserved covariates and their interactions. Data uncertainty was captured by the Bayesian representation of the P-splines smooth functions. Additionally, the effects of unobserved covariates are analyzed at two levels including the structured level that globally considers a possible dependency between the deterioration pattern of pipes in the neighborhood and the unstructured level that account for local heterogeneities. The model formulation is general and is applicable to both inspected and uninspected pipes. The tool developed is an important decision support tool for urban water utility managers in their prioritization of inspection, maintenance, and replacement.
    • Download: (2.182Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Statistical Inference of Sewer Pipe Deterioration Using Bayesian Geoadditive Regression Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4260612
    Collections
    • Journal of Infrastructure Systems

    Show full item record

    contributor authorNgandu Balekelayi
    contributor authorSolomon Tesfamariam
    date accessioned2019-09-18T10:42:51Z
    date available2019-09-18T10:42:51Z
    date issued2019
    identifier other%28ASCE%29IS.1943-555X.0000500.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4260612
    description abstractSeveral deterioration models have been developed for prediction of the actual and future condition states of individual sewer pipes. However, most tools that have been developed assume a linear dependency between the predictor and the structural condition response. Moreover, unobserved variables are not included in the models. Physical processes, such as the deterioration of pipes, are complex, and a nonlinear dependency between the covariates and the condition of the pipes is more realistic. This study applied a Bayesian geoadditive regression model to predict sewer pipe deterioration scores from a set of predictors categorized as physical, maintenance, and environmental data. The first and second groups of covariates were allowed to affect the response variables linearly and nonlinearly. However, the third group of data was represented by a surrogate variable to account for unobserved covariates and their interactions. Data uncertainty was captured by the Bayesian representation of the P-splines smooth functions. Additionally, the effects of unobserved covariates are analyzed at two levels including the structured level that globally considers a possible dependency between the deterioration pattern of pipes in the neighborhood and the unstructured level that account for local heterogeneities. The model formulation is general and is applicable to both inspected and uninspected pipes. The tool developed is an important decision support tool for urban water utility managers in their prioritization of inspection, maintenance, and replacement.
    publisherAmerican Society of Civil Engineers
    titleStatistical Inference of Sewer Pipe Deterioration Using Bayesian Geoadditive Regression Model
    typeJournal Paper
    journal volume25
    journal issue3
    journal titleJournal of Infrastructure Systems
    identifier doi10.1061/(ASCE)IS.1943-555X.0000500
    page04019021
    treeJournal of Infrastructure Systems:;2019:;Volume ( 025 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian