YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Behavior and Design of Bridge Piers Subjected to Heavy Truck Collision

    Source: Journal of Bridge Engineering:;2019:;Volume ( 024 ):;issue: 007
    Author:
    Ran Cao
    ,
    Sherif El-Tawil
    ,
    Anil Kumar Agrawal
    ,
    Xiaochen Xu
    ,
    Waider Wong
    DOI: 10.1061/(ASCE)BE.1943-5592.0001414
    Publisher: American Society of Civil Engineers
    Abstract: Heavy trucks, such as tractor–semitrailers weighing up to 360 kN, represent a serious collision hazard for unprotected bridge piers. Current specifications recommend designing a bridge pier vulnerable to vehicular impacts for a static force of 2,670 kN applied on the pier at a specified height. However, the impact load delivered by a heavy truck is dynamic and not applied at a single height during the crash process. High-fidelity computational simulation is used to gain insight into how force is delivered to a bridge pier during a crash. The impact force time histories generated during a collision are simplified into a series of triangular pulse functions applied at various heights. Key parameters defining the pulse models are truck weight, approach speed, and pier size. The values of these parameters are derived from numerical regression based on the simulation results. By comparing pier damage modes and deformation profiles, the proposed pulse model is demonstrated to be able to accurately represent the truck impact demands. We have proposed a capacity design philosophy to mitigate the effects of shear failure. We revealed that piers designed according to the proposed philosophy are less likely to fail in shear compared with regular piers. We asserted that together, the simple pulse model and proposed capacity design approach can serve as a basis for future performance-based design provisions for bridge piers subjected to heavy truck impact.
    • Download: (4.301Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Behavior and Design of Bridge Piers Subjected to Heavy Truck Collision

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4260597
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorRan Cao
    contributor authorSherif El-Tawil
    contributor authorAnil Kumar Agrawal
    contributor authorXiaochen Xu
    contributor authorWaider Wong
    date accessioned2019-09-18T10:42:47Z
    date available2019-09-18T10:42:47Z
    date issued2019
    identifier other%28ASCE%29BE.1943-5592.0001414.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4260597
    description abstractHeavy trucks, such as tractor–semitrailers weighing up to 360 kN, represent a serious collision hazard for unprotected bridge piers. Current specifications recommend designing a bridge pier vulnerable to vehicular impacts for a static force of 2,670 kN applied on the pier at a specified height. However, the impact load delivered by a heavy truck is dynamic and not applied at a single height during the crash process. High-fidelity computational simulation is used to gain insight into how force is delivered to a bridge pier during a crash. The impact force time histories generated during a collision are simplified into a series of triangular pulse functions applied at various heights. Key parameters defining the pulse models are truck weight, approach speed, and pier size. The values of these parameters are derived from numerical regression based on the simulation results. By comparing pier damage modes and deformation profiles, the proposed pulse model is demonstrated to be able to accurately represent the truck impact demands. We have proposed a capacity design philosophy to mitigate the effects of shear failure. We revealed that piers designed according to the proposed philosophy are less likely to fail in shear compared with regular piers. We asserted that together, the simple pulse model and proposed capacity design approach can serve as a basis for future performance-based design provisions for bridge piers subjected to heavy truck impact.
    publisherAmerican Society of Civil Engineers
    titleBehavior and Design of Bridge Piers Subjected to Heavy Truck Collision
    typeJournal Paper
    journal volume24
    journal issue7
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001414
    page04019057
    treeJournal of Bridge Engineering:;2019:;Volume ( 024 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian