YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Creep Characteristics and Model of Key Unit Rock in Slope Potential Slip Surface

    Source: International Journal of Geomechanics:;2019:;Volume ( 019 ):;issue: 008
    Author:
    Huan Zhang
    ,
    Hongbao Zhao
    ,
    Xiangyang Zhang
    ,
    Tao Wang
    ,
    Huahua Li
    ,
    Yu Wang
    DOI: 10.1061/(ASCE)GM.1943-5622.0001486
    Publisher: American Society of Civil Engineers
    Abstract: The creep characteristics of the key unit rock in a slope potential slip surface play an important role in the evolution of slope slip. In this research, a systematic restrictive shear creep experimental study was conducted to investigate the restrictive shear creep characteristics of the key unit rock in a slope potential slip surface. A new plastic nonlinear model (PFY model) was developed to characterize the progressive-failure creep characteristics reflected in the process of the restrictive shear creep of rock. A variable-parameter restrictive shear creep model was established to reflect the progressive-failure characteristics and describe the whole process of restrictive shear creep of the rock and the two failure mechanisms of the rock, which can provide the reference base for the prediction of the time of shear creep failure of the rock. The constitutive equations characterizing the shear creep characteristics of the rock were established, and the methods to solve model parameters were determined. In addition, according to the obtained experimental data, the model parameters were solved, and the theoretical curves of the model were fitted with the experimental curves. The new model was validated, and the sensitivity of the model parameters to creep-failure time were analyzed. The results show that the overburden pressure and the maximum creep strain of the key unit rock in a slope play a leading role in the progressive failure and instability of the rock, and the shear creep rate with time fits the power function well. The theoretical curves of the new model match well with the experimental curves, and the differences in the creep-failure time between the model calculation values and the experimental values are small, which indicates the new model is appropriate in describing the creep characteristics of the rock. For the shear creep-failure time, the viscous coefficient η2 is the most sensitive, the accelerating point strain γa comes next, and the progressive-failure coefficient β is the least sensitive.
    • Download: (3.766Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Creep Characteristics and Model of Key Unit Rock in Slope Potential Slip Surface

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4260388
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorHuan Zhang
    contributor authorHongbao Zhao
    contributor authorXiangyang Zhang
    contributor authorTao Wang
    contributor authorHuahua Li
    contributor authorYu Wang
    date accessioned2019-09-18T10:41:46Z
    date available2019-09-18T10:41:46Z
    date issued2019
    identifier other%28ASCE%29GM.1943-5622.0001486.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4260388
    description abstractThe creep characteristics of the key unit rock in a slope potential slip surface play an important role in the evolution of slope slip. In this research, a systematic restrictive shear creep experimental study was conducted to investigate the restrictive shear creep characteristics of the key unit rock in a slope potential slip surface. A new plastic nonlinear model (PFY model) was developed to characterize the progressive-failure creep characteristics reflected in the process of the restrictive shear creep of rock. A variable-parameter restrictive shear creep model was established to reflect the progressive-failure characteristics and describe the whole process of restrictive shear creep of the rock and the two failure mechanisms of the rock, which can provide the reference base for the prediction of the time of shear creep failure of the rock. The constitutive equations characterizing the shear creep characteristics of the rock were established, and the methods to solve model parameters were determined. In addition, according to the obtained experimental data, the model parameters were solved, and the theoretical curves of the model were fitted with the experimental curves. The new model was validated, and the sensitivity of the model parameters to creep-failure time were analyzed. The results show that the overburden pressure and the maximum creep strain of the key unit rock in a slope play a leading role in the progressive failure and instability of the rock, and the shear creep rate with time fits the power function well. The theoretical curves of the new model match well with the experimental curves, and the differences in the creep-failure time between the model calculation values and the experimental values are small, which indicates the new model is appropriate in describing the creep characteristics of the rock. For the shear creep-failure time, the viscous coefficient η2 is the most sensitive, the accelerating point strain γa comes next, and the progressive-failure coefficient β is the least sensitive.
    publisherAmerican Society of Civil Engineers
    titleCreep Characteristics and Model of Key Unit Rock in Slope Potential Slip Surface
    typeJournal Paper
    journal volume19
    journal issue8
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0001486
    page04019094
    treeInternational Journal of Geomechanics:;2019:;Volume ( 019 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian