YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Strength and Failure Characteristics of Rocklike Material Containing a Large-Opening Crack under Uniaxial Compression: Experimental and Numerical Studies

    Source: International Journal of Geomechanics:;2019:;Volume ( 019 ):;issue: 008
    Author:
    Shibing Huang
    ,
    Nan Yao
    ,
    Yicheng Ye
    ,
    Xianze Cui
    DOI: 10.1061/(ASCE)GM.1943-5622.0001477
    Publisher: American Society of Civil Engineers
    Abstract: A series of uniaxial compression experiments was conducted on rocklike specimens containing a large-opening crack to investigate the effect of inclination angle and length of crack on the uniaxial compressive strength (UCS) and failure mode. A particle flow code, based on the discrete element method, was used to simulate the propagation process and reveal the fracture mechanism of a preexisting crack with a large opening. The failure of these large-opening crack specimens was mainly caused by the development of shear secondary cracks and not by tensile wing cracks, although the shear cracks initiated from the crack tip after the tensile wing cracks. The preexisting large crack remained open after compression failure. The mean rupture angle was approximately 63.6°, and it was independent of the crack inclination angle and length. An increase in inclination angle from 0° to 90° or a decrease in crack length from 30 to 0 mm led to a nonlinear increase in UCS owing to the increase in effective shearing resistance area. The experimental results are in accordance with the numerical results, and they provide a significant understanding of the UCS and failure characteristics of rocks with large-opening cracks.
    • Download: (8.944Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Strength and Failure Characteristics of Rocklike Material Containing a Large-Opening Crack under Uniaxial Compression: Experimental and Numerical Studies

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4260377
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorShibing Huang
    contributor authorNan Yao
    contributor authorYicheng Ye
    contributor authorXianze Cui
    date accessioned2019-09-18T10:41:43Z
    date available2019-09-18T10:41:43Z
    date issued2019
    identifier other%28ASCE%29GM.1943-5622.0001477.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4260377
    description abstractA series of uniaxial compression experiments was conducted on rocklike specimens containing a large-opening crack to investigate the effect of inclination angle and length of crack on the uniaxial compressive strength (UCS) and failure mode. A particle flow code, based on the discrete element method, was used to simulate the propagation process and reveal the fracture mechanism of a preexisting crack with a large opening. The failure of these large-opening crack specimens was mainly caused by the development of shear secondary cracks and not by tensile wing cracks, although the shear cracks initiated from the crack tip after the tensile wing cracks. The preexisting large crack remained open after compression failure. The mean rupture angle was approximately 63.6°, and it was independent of the crack inclination angle and length. An increase in inclination angle from 0° to 90° or a decrease in crack length from 30 to 0 mm led to a nonlinear increase in UCS owing to the increase in effective shearing resistance area. The experimental results are in accordance with the numerical results, and they provide a significant understanding of the UCS and failure characteristics of rocks with large-opening cracks.
    publisherAmerican Society of Civil Engineers
    titleStrength and Failure Characteristics of Rocklike Material Containing a Large-Opening Crack under Uniaxial Compression: Experimental and Numerical Studies
    typeJournal Paper
    journal volume19
    journal issue8
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0001477
    page04019098
    treeInternational Journal of Geomechanics:;2019:;Volume ( 019 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian