YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Elastoplastic Solutions for Surrounding Rock Masses of Deep-Buried Circular Tunnels with Non-Darcian Flow

    Source: International Journal of Geomechanics:;2019:;Volume ( 019 ):;issue: 007
    Author:
    Bing-qiang Zhang
    ,
    Fu-quan Chen
    ,
    Qi-yun Wang
    DOI: 10.1061/(ASCE)GM.1943-5622.0001442
    Publisher: American Society of Civil Engineers
    Abstract: The significant characteristics of the non-Darcian flow of groundwater seepage in a low-permeability rock mass have been reported, but there have been few studies on the analytical solutions for deep-buried circular tunnels comprising non-Darcian flow. In this study, based on the theory of non-Darcian flow and well pumping, an analytical solution was derived for the seepage field of rock masses surrounding a deep-buried circular tunnel. With consideration of seepage force due to non-Darcian flow as a volume pressure added to the stress field of the rock masses, an elastoplastic analytical solution was derived on the basis of the unified yield criterion. The analytical solutions were validated by comparing with those for the cases of Darcian flow and disregard for seepage, and the influences of various parameters on the plastic zone radius, radial displacement, and support characteristic curve were investigated. The results showed that under the condition of non-Darcian flow, the seepage forces had a slower increasing trend toward the tunnels. The plastic zone radius and radial displacement of the rock masses with non-Darcian flow remained between the upper limits in the condition of Darcian flow and the lower limits of disregard for seepage. With an increase in the head loss between the internal and external sections of a tunnel and a decrease in the united yield criterion parameter and the exponential parameter at low gradients, the plastic zone radius and radial displacement at the tunnel walls tended to gradually increase. As the hydraulic head loss between the internal and external sections of a tunnel increased, the influences of united yield criterion parameter, exponential parameter, and supporting pressure on the plastic zone radius and radial displacement were more significant. The analytical solution presented in this study can be used to design a tunnel excavated in a low-permeability rock mass below a water table.
    • Download: (529.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Elastoplastic Solutions for Surrounding Rock Masses of Deep-Buried Circular Tunnels with Non-Darcian Flow

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4260340
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorBing-qiang Zhang
    contributor authorFu-quan Chen
    contributor authorQi-yun Wang
    date accessioned2019-09-18T10:41:33Z
    date available2019-09-18T10:41:33Z
    date issued2019
    identifier other%28ASCE%29GM.1943-5622.0001442.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4260340
    description abstractThe significant characteristics of the non-Darcian flow of groundwater seepage in a low-permeability rock mass have been reported, but there have been few studies on the analytical solutions for deep-buried circular tunnels comprising non-Darcian flow. In this study, based on the theory of non-Darcian flow and well pumping, an analytical solution was derived for the seepage field of rock masses surrounding a deep-buried circular tunnel. With consideration of seepage force due to non-Darcian flow as a volume pressure added to the stress field of the rock masses, an elastoplastic analytical solution was derived on the basis of the unified yield criterion. The analytical solutions were validated by comparing with those for the cases of Darcian flow and disregard for seepage, and the influences of various parameters on the plastic zone radius, radial displacement, and support characteristic curve were investigated. The results showed that under the condition of non-Darcian flow, the seepage forces had a slower increasing trend toward the tunnels. The plastic zone radius and radial displacement of the rock masses with non-Darcian flow remained between the upper limits in the condition of Darcian flow and the lower limits of disregard for seepage. With an increase in the head loss between the internal and external sections of a tunnel and a decrease in the united yield criterion parameter and the exponential parameter at low gradients, the plastic zone radius and radial displacement at the tunnel walls tended to gradually increase. As the hydraulic head loss between the internal and external sections of a tunnel increased, the influences of united yield criterion parameter, exponential parameter, and supporting pressure on the plastic zone radius and radial displacement were more significant. The analytical solution presented in this study can be used to design a tunnel excavated in a low-permeability rock mass below a water table.
    publisherAmerican Society of Civil Engineers
    titleElastoplastic Solutions for Surrounding Rock Masses of Deep-Buried Circular Tunnels with Non-Darcian Flow
    typeJournal Paper
    journal volume19
    journal issue7
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0001442
    page04019065
    treeInternational Journal of Geomechanics:;2019:;Volume ( 019 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian